
Stream Reasoning and Multi-Context Systems

Thomas Eiter

Institute of Logic and Computation
Vienna University of Technology (TU Wien)

joint work with M. Dao-Tran1, A. Falkner3, P. Ogris2, K. Schekotihin2,
P. Schneider1,3, P. Schüller1, A. Weinzierl1

(1) (2) (3)

Stream Reasoning Workshop 2019,
Linköping, Sweden, April 16-17, 2019

Austrian Science Fund (FWF) grant P26471

Austrian Research Promotion Agency (FFG), 588655

SR and MCS 1. Multi-Context Systems

Outline

1. Multi-Context Systems

2. MCS and Data Streams

3. MCS for Smart Cyber-Physical Systems

4. DynaCon: Dynamic Configuration

5. Conclusion

eiter@kr.tuwien.ac.at SRWS 2019 1/39

SR and MCS 1. Multi-Context Systems

Multi-Context Systems

Contextual Reasoning: model information
interlinkage of knowledge bases / agents
• information flow between KBs via bridge rules

Mr.1 : row(X)← (Mr.2 : sees_row(X))
Mr.2 : col(Y)← (Mr.1 : sees_col(Y))

• equilibrium ensures aligned information

Ghidina & Giunchiglia’s Magic Box

Different early varieties
• Trento School (Giunchiglia, Serafini et al.):

• Heterogeneous MCS [Giunchiglia and Serafini, 1994]

• Nonmonotonic bridge rules [Roelofsen and Serafini, 2005]

• Extension to Contextual Default Logic [Brewka et al., 2007]

• nonmonotonic multi-context systems (MCS) [Brewka and E_, 2007]

• managed MCS (mMCS) [Brewka et al., 2011]

eiter@kr.tuwien.ac.at SRWS 2019 2/39

SR and MCS 1. Multi-Context Systems

Nonmonotonic Multi-Context Systems (MCS)

Multi-Context System

Formally, a Multi-Context System

M = (C1, . . . ,Cn)

consists of contexts

Ci = (Li, kbi, bri), i ∈ {1, . . . , n},
where
• each Li is a “logic,”

• each kbi is a knowledge base in Li, and

• each bri is a set of Li-bridge rules over M’s logics.

eiter@kr.tuwien.ac.at SRWS 2019 3/39

SR and MCS 1. Multi-Context Systems

Logic

A logic L is a tuple L = (KBL,BSL,ACCL), where

• KBL is a set of well-formed knowledge bases, each being a set (of “formulas”)

• BSL is a set of possible belief sets, each being a set (of “formulas”)

• ACCL : KBL → 2BSL assigns each KB a set of acceptable belief sets

Thus, logic L caters for multiple extensions of a knowledge base.

Bridge Rules

A Li-bridge rule over logics L1, . . . ,Ln, 1 ≤ i ≤ n, is of the form

s← (r1 : p1), . . . , (rj : pj), not(rj+1 : pj+1), . . . , not(rm : pm)

where kb ∪ {s} ∈ KBi for each kb ∈ KBi, each rk ∈ {1, . . . , n}, and each pk

is in some belief set of Lrk .

Note: such rules are akin to rules of normal logic programs

eiter@kr.tuwien.ac.at SRWS 2019 4/39

SR and MCS 1. Multi-Context Systems

Example (Authors)

Suppose a MCS M = (C1,C2) has contexts that express the individual views of
a paper by the two authors.

C1:

• L1 = Classical Logic

• kb1 = { unhappy ⊃ revision }
• br1 = { unhappy← (2 : work) }

C2:

• L2 = Reiter’s Default Logic

• kb2 = { good : accepted/accepted }
• br2 = { work← (1 : revision),

good ← not(1 : unhappy) }

eiter@kr.tuwien.ac.at SRWS 2019 5/39

SR and MCS 1. Multi-Context Systems

Equilibrium Semantics

Belief State

A belief state is a sequence S = (S1, . . . , Sn) of belief sets Si in Li

Applicable Bridge Rules

For M = (C1, . . . ,Cn) and belief state S=(S1, . . . , Sn), the bridge rule

s← (r1 : p1), . . . , (rj : pj), not(rj+1 : pj+1), . . . , not(rm : pm)

is applicable in S if (1) pi ∈ Sri , for 1 ≤ i ≤ j, and (2) pk 6∈ Srk , for j < k ≤ m.

Equilibrium
A belief state S = (S1, . . . , Sn) of M is an equilibrium iff for all i = 1, . . . , n,

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri is applicable in S}) .

eiter@kr.tuwien.ac.at SRWS 2019 6/39

SR and MCS 1. Multi-Context Systems

Equilibrium Semantics, cont’d

Example, cont’d

Reconsider M = (C1,C2):

kb1 = { unhappy ⊃ revision } (Classical Logic)

br1 = { unhappy← (2 :work) }

kb2 = { good : accepted/accepted } (Default Logic)

br2 = { work← (1 : revision),
good ← not(1 : unhappy) }

M has two equilibria:

E1 = (Th({unhappy, revision}),Th({work})) and

E2 = (Th({unhappy ⊃ revision}), Th({good, accepted}))

eiter@kr.tuwien.ac.at SRWS 2019 7/39

SR and MCS 1. Multi-Context Systems

Managed MCS
MCS: pure information alignment, fully static

introduce context manager, to update/change the KB

• Bridge rules:

op(f)← (c1: p1), . . . , (cj: pj), not(cj+1: pj+1), . . . , not(cm: pm).

• management function mng : 2FOP
LS × KBLS → 2(KBLS×ACCLS) \ {∅}

assigns updates commands + KB a follow-up KB + evaluation semantics

managed context Ci = (LSi, kbi, bri,OPi,mngi) with

• LSi = (BSLSi ,KBLSi ,ACCLSi) a logic suite,
• kbi ∈ KBLSi a knowledge base,
• bri a set of bridge rules for Ci,
• OPi a management base (commands), and
• mngi a management function over LSi and OPi.

Managed Multi-Context System (mMCS) M = (C1, . . . ,Cn) are stateful, form the
basis of other MCS (eMCs, rMCS, aMCS, sMCS, dMCS, tMCS)

eiter@kr.tuwien.ac.at SRWS 2019 8/39

SR and MCS 1. Multi-Context Systems

Managed MCS, cont’d

Example (Diseases)
C1: relational database on disease treatments

kb1 = { treat(pen, str_pneu, pneu, evd), treat(azith, leg_pneu, leg, evd), ineff (pen, leg_pneu)}

conclude likely effects using C2.

br1 = { treat(X,B, I, likely)←(1 : treat (X,B, _, _)) ,(2 : B rdf :causes I) .}.

C2: RDF-triple store on disease causations.

kb2 = {str_pneu rdf :causes men, leg_pneu rdf :causes atyp_pneu}.

C3: bacteria ontology (DL)
C4: generalized logic program deriving possible medication effects:

br4 = { add(isa(X, Y))← (3 : (X v Y)) .

add(eff (X,B))← (1 : eff (X,B)) .

upd(not eff (X,B))← (1 : ineff (X,B)) .},
Semantics

Applicable bridge rule heads: appi(S) = {hd(r) | r ∈ bri ∧ S |= body(r)}.
Equilibrium: S = (S1, . . . , Sn) iff for every 1 ≤ i ≤ n some
(kb′i ,ACCLSi)∈mngi(appi(S), kbi) exists s.t. Si ∈ ACCLSi (kb′i).

eiter@kr.tuwien.ac.at SRWS 2019 9/39

SR and MCS 2. MCS and Data Streams

1. Multi-Context Systems

2. MCS and Data Streams

3. MCS for Smart Cyber-Physical Systems

4. DynaCon: Dynamic Configuration

5. Conclusion

eiter@kr.tuwien.ac.at SRWS 2019 10/39

SR and MCS 2. MCS and Data Streams

Streaming World

Sensors, networks, mobile devices:
• getting to a connected world...

Pushing rather than pulling of data

Dynamic streams of data, potentially infinite
• low frequency changes (meter reading)

• high frequency changes (stock trading)

Continuous computation / evaluation
• synchronous vs. asynchronous

Reference to time

Poses challenges to MCSs

eiter@kr.tuwien.ac.at SRWS 2019 11/39

SR and MCS 2. MCS and Data Streams

Example: Cooperative Robots

3RA 4

5 6 7 D1

89RB

2 1 D2P2

P1

4

In a mall, robots must deliver packages to destinations

RA must deliver package P1 (at 9) to destination D1 (7)

RB must deliver package P2 (at 4) to destination D2 (1)

Minimize travel distance: agree to pick up other package and exchange
(e.g. at node 5)

Agreement may be challenging: robots already move, connections turn out
unusable (too many people around), . . .

Setting: dynamic monitoring of usability

sensors for position, occupation etc.

eiter@kr.tuwien.ac.at SRWS 2019 12/39

SR and MCS 2. MCS and Data Streams

MCS Features

(static) MCS, mMCS: have an equilibrium (fixpoint) semantics

(dynamic) reactive MCS (rMCS) [Brewka et al., 2014,2018],
evolving MCS (eMCS) [Gonçalves et al., 2014]:

• computing equilibria is timeless

(dynamic) asynchronous MCS (aMCS) [Ellmauthaler and Pührer, 2015]:

• physical computation time, transfer time are disregarded
• no baseline mechanism to achieve equilibrium

streaming MCS (sMCS) [Dao-Tran and E_, 2017]:

• bridge rules with window atoms (simple LARS formulas [Beck et al., 2018]) to
access input streams

• model computation time and data transfer time
• internal asynchronous execution control (restart/wait on eval requests)
• run-based semantics, with feedback equilibria to enforce local stability

in runs (avoid infinite loops, and generalize rMCS, eMCS)

additional stream reasoning inside contexts possible!

eiter@kr.tuwien.ac.at SRWS 2019 13/39

SR and MCS 2. MCS and Data Streams 2.1 Streaming MCS

sMCS by Example (cont’d)

ACCplanning

update(pos(X, Y, L) ←(4 : pos(X, Y, L))
update(block(X, Y)) ←(3 : block(X, Y))
remove(block(X, Y)) ←not (3 : �32block(X, Y)),

(1 : block(X, Y)

C1 ACCplanning

update(m1(X)) ←(1 : m(X))
update(pos(X, Y, L) ←(5 : pos(X, Y, L))
update(block(X, Y)) ←(3 : block(X, Y))
remove(block(X, Y)) ←not (3 : �32block(X, Y)),

(2 : block(X, Y))

C2

block(X, Y)← cr(X, Y)

update(cr(X, Y))← (6 : �82n(X, Y, N)), N > 10

C3C4 C5C6

sensor context Ci, 4≤ i≤ 6 feeds sensor input to Ci−3

C4 (C5) tells position pos(X, Y, L) of RA (RB) on X → Y, L ∈ {0%, . . . , 100%}
C3 gets sensor data of C6, infers blocked connections and sends this info to C1,C2

C1 (C2): shortest route for RA (RB) to D1 (D2), with blocked connections, meeting point m(X)

bridge rules: window atoms (6: �8 2n(X, Y,N)), (3: �3 2block(X, Y))

update(cr(X, Y))← (6 : �82n(X, Y,N)),N > 10 accesses C6’s output
• “store link X → Y is crowded, if C6 reported in the last 8 mins always 10 people on it.”

remove(block(X, Y))← not (3 : �32block(X, Y)), (2 : block(X, Y))

• “unblock link X → Y unblocked, if C3 didn’t report it the last 3 mins always blocked.”

eiter@kr.tuwien.ac.at SRWS 2019 14/39

SR and MCS 2. MCS and Data Streams 2.1 Streaming MCS

Run-based Semantics

A state of Ci is a triple si=(si, oi, kbi) where
• si⊆{IE, SE} is the execution status (intend to execute / start to execute)
• oi ⊆ Beli is the output belief set streamed to other contexts, unless oi = ε;
• kbi is the local KB (which can evolve).

runs are constrained state sequences s = s(0), . . . , s(t) of global states
s(t′) = (s1(t′), . . . , sn(t′)), where each si(t′) is state of Ci:
• delay intention IE to actual start SE (busy) or restart
• respect data transfer time ∆ki, computation time fi(bri, kbi)

Example (run trace) (focus on C1,C2; ISE1,2 = {IE1, SE1, IE2, SE2}, ISE2 = {IE2, SE2})

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ISE1,2 {m(5)}1 ISE2 ISE1,2 ∅1 ∅2 ISE1,2 IE1 SE1

∅1
{m(6)}1

∅2
ISE1,2 ∅1 ∅2

• sensors C4, C5 stream at 5k≥ 0, C6 streams continuously
• C1,C2,C3 run in pushing mode; C1 ignores new input when busy; C2, C3 restart.
• ∆12 = ∆31 = 1 and ∆ij = 0 otherwise
• f1(br1, kb1)=2, f2(br2, kb2)=4, and f3(br3, kb3)=1 for all kbi

• C3 sends block(5, 6) at t = 10 (ignored by C1 at 11)

eiter@kr.tuwien.ac.at SRWS 2019 15/39

SR and MCS 2. MCS and Data Streams 2.2 Equilibria and Local Stability

Idealized Runs

Aim: capture rMCS and eMCS which feature step-wise equilibrium computation at
zero cost (= infinite speed)

Naive Approach: set in runs ∆ki = fi = 0
• does not work: local KBs kbi could not change (but rMCS/eMCS runs are stateful)

Way out: extend time ontology with infinitesimally small chronon ε

• computation time is ε
• t < t + ε and t + ε = t + kε for each k ∈ N > 0
• transfer time fi = 0

In an idealized run s = (s0, . . . , stend),

oi(t+1) = oi(t+ε) and kbi(t+1) = kbi(t+ε),
where
• oi(t + ε) = ACC(kbi(t + ε)) and

• kbi(t + ε) = mngi(appεi (s, t), kbi(t))

Emulation Property: runs of an rMCS M (resp. eMCS M from a natural class) can
be emulated by idealized runs of a corresponding sMCS Ms

eiter@kr.tuwien.ac.at SRWS 2019 16/39

SR and MCS 2. MCS and Data Streams 2.2 Equilibria and Local Stability

Feedback Equilibria

Total asynchrony can be uncomfortable if contexts depend on each other

Suppose also C2 suggests a meeting point, imported by C1 into kb1 via

update(m2(X))← (2:m(X))

Meeting mismatch: do a further round (e.g., follow other proposal)

Assume f1(br1, kb1)=2, f2(br2, kb2) = 3 for all kbi , ∆12 = 1, other costs=0:

0 1 2 3 4 5 6 7 8 9

ISE1,2 ISE1,2ISE1,2 ISE1,2{m(5)}1 {m(6)}1 {m(5)}1

{m(6)}2 {m(5)}2 {m(6)}2

computing an agreed meeting point loops indefinitely

eiter@kr.tuwien.ac.at SRWS 2019 17/39

SR and MCS 2. MCS and Data Streams 2.2 Equilibria and Local Stability

Feedback Equilibria, cont’d

Key ideas:
• consider strongly connected components (SCCs) via

an import graph (Ci → Cj, if (j:A) occurs in bri)

• for equilibrium computation, dispense streaming data from outside

• any Ci can request, while computing, at time t stability of its SCC Ci:

• the contexts in Ci are restarted with input at texe

• at some t′′≥ t, either Ci reports an equilibrium, or Ci restarts its contexts
with input at time t′′ if no equilibrium exists

Feedback Equilibrium of Ci wrt. run s at time t: for every Cij ∈ Ci,

belief set BSij ∈ ACCij(mngij(appε
ij(s, t), kbij(t)))

• intuitively, run in idealized mode

• input to Ci is frozen at t

• inside Ci, cyclic information flow is respected

eiter@kr.tuwien.ac.at SRWS 2019 18/39

SR and MCS 2. MCS and Data Streams 2.2 Equilibria and Local Stability

Locally Stable Runs

ρ denotes a stability request, EQ is a new status

Informally a locally stable run for C is a run s = (s0, . . . , stend), s.t.
• requests for local stability of C at time t are granted at t′ ≥ t;
• to serve a request, all C ∈ Ci switch to equilibrium computation from t;
• a feedback eq. is returned at output time tout if one exists, else C is restarted.

A run s is locally stable, if it is locally stable for each SCC

Example

0 1 2 3 4 5 6 7

ISE1,2 ISE1,2

ρ1

{m(5)}1

{m(6)}2
EQ1,2 EQ1,2 EQ1,2 {m(6)}1

C1 realizes at t = 3 that C2’s suggestion does not match his of t = 2.

C1 requests local stabilization for C1 = {C1,C2}
meeting at node 6 yields an equilibrium at time 7

eiter@kr.tuwien.ac.at SRWS 2019 19/39

SR and MCS 2. MCS and Data Streams 2.3 Reasoning Problems

Reasoning

Setting: sMCS M=(C1, . . . ,Cn)

• sensor contexts O=Cj,Cj+1, . . . ,Cn

• reading r=r(0), . . . , r(t): sensor data stream
• periodic decision to execute, permanent ignore/restart
• algs to evaluate bri, mngi, ACCi (compute some BSi ∈ ACCi(kbi))

Monitoring: watch the past
• M, r |=b Ci(a): a is believed at Ci at time t in some run s = (s0, . . . , st) for r
• M, r |=bs Ci(a): . . . some locally stable run . . .

Prediction: consider future data
• M, r |=t′

x Ci(a): does M, r′ |=x Ci(a) for an extension r′ of r up to t′?

• M, r |=∞x Ci(a): does M, r |=t′
x Ci(a) for some t′?

eiter@kr.tuwien.ac.at SRWS 2019 20/39

SR and MCS 2. MCS and Data Streams 2.3 Reasoning Problems

Reasoning: Complexity

Monitoring and Prediction with bounded horizon (M, r |=t′
x Ci(a)) is decidable, but

intractable in general

Unbounded Prediction (M, r |=∞x Ci(a)) is undecidable in general, due to

(U1) kbi, (U2) unbounded streams, (U3) pathologic window evaluation

Prediction is in PSpace, if

• each kbi remains in polynomial size,
• context evaluation (bri, mngi, ACCi) feasible in polynomial space,
• the bridge rules bri are plain (roughly, time references at eval time are fixed

offsets) and all windows are regular (e.g., small time/tuple-based windows)

⇒ streams manageable in pol. space (intuitively, recent input)

Tractability (moreover logspace feasibility) needs severe restrictions

Links to work on streams in databases [Gurevich et al., 2007] and ontologies
[Özçep, 2017], and recent work at Oxford and Linköping

eiter@kr.tuwien.ac.at SRWS 2019 21/39

SR and MCS 3. MCS for Smart Cyber-Physical Systems

1. Multi-Context Systems

2. MCS and Data Streams

3. MCS for Smart Cyber-Physical Systems

4. DynaCon: Dynamic Configuration

5. Conclusion

eiter@kr.tuwien.ac.at SRWS 2019 22/39

SR and MCS 3. MCS for Smart Cyber-Physical Systems

MCS for Smart Cyber-Physical Systems (CPS)

Distributed systems with lots
of sensors

Possible embedding in the
Internet of Everything

“Friendly & Kind” (F&K)
systems, e.g. in e-health

Bridge rules as vital elements
for knowledge exchange

mMCS are nicely abstract, but
limitations require extensions;
cf. [Costantini and Gasperis,
2016], [Cabalar et al., 2017]

[Costantini and Gasperis, 2016]

Proposals:
• dynamic mMCS (dMCS) [Costantini and Gasperis, 2016], [Dao-Tran et al.,

2011]: link at runtime
• timed mMCS (tMCS) [Cabalar et al., 2017]: update state prior to bridge rule

evaluation

eiter@kr.tuwien.ac.at SRWS 2019 23/39

SR and MCS 3. MCS for Smart Cyber-Physical Systems

MCS for Smart Cyberphysical Systems, cont’d

MCS Rationale

• stay at the abstract level

• use MCS more as modeling tool

• heterogeneous components as contexts

• interlinkage and exchange

• also useful for simulation

Scenario: Dynamic Configuration

• go beyond monitoring / prediction

• dynamically change / adapt the behavior of components

eiter@kr.tuwien.ac.at SRWS 2019 24/39

SR and MCS 3. MCS for Smart Cyber-Physical Systems 3.1 MCS for Dynamic Configuration

Content-Centric Networks

The content in the network is
addressed by “name” – physical
location is irrelevant

Content-Centric Routers (CCR) can
route interest packages, cache and
adapt media chunks in highly dynamic
conditions

Cache sizes are limited – efficient
caching strategies needed

Consumer

Consumer

Consumer Consumer

Producer

0

3

2

1
4

Producer

Example
Factor: Current daytime
• Morning: few users interested in different media
• Evening: many users are watching a small amount of popular series

Possible caching strategies for the scenarios above:

• Random: replaces a random chunk in the cache with a random recent chunk
• LFU: a new chunk replaces the Least Frequently Used chunk

eiter@kr.tuwien.ac.at SRWS 2019 25/39

SR and MCS 3. MCS for Smart Cyber-Physical Systems 3.1 MCS for Dynamic Configuration

Extended CCR – Intelligent Caching Agent

Reasoner

Networking

UnitEvent

Database

KB

parameters

state

snapshot

commands

configuration

C
O
N
T
R
O
L
L
E
R

Output

Input

Cache

chunks

Standard CCN RouterDecision unit

Legacy components of a CCR:

• networking unit: implements network interfaces
• controller: manages content adaptation, routing and caching

Extended architecture:

• KB system: choose controller’s decision making strategy
• desired: human-readable KR language for admin actions

eiter@kr.tuwien.ac.at SRWS 2019 26/39

SR and MCS 3. MCS for Smart Cyber-Physical Systems 3.1 MCS for Dynamic Configuration

CCR Administration Problem

LARS Encoding

high← value(V),�k sec@T alpha(V), 18 ≤ V.

mid← value(V),�k sec@T alpha(V), 12 ≤ V < 18.
low← value(V),�k sec@T alpha(V), V ≤ 12.
lfu← �k sec� high.
lru← �k sec� mid.
fifo← �k sec� low,�[k sec]3 rtm50.
done← lfu ∨ lru ∨ fifo.
random← not done.

A simple prototype, using ndnSIM (a general network simulator) and solver.hex
(implements a LARS fragment usng dlvhex (hybrid ASP) was done

Later, LARS Ticker [Beck et al., 2017] encodings (for k = 3):

high :− value (V) , alpha (V) a t T [3 sec] , 18 <= V.
mid :− value (V) , alpha (V) a t T [3 sec] , 12 <= V, V < 18.
low :− value (V) , alpha (V) a t T [3 sec] , V <= 12.
l f u :− high always [3 sec] .
l r u :− mid always [3 sec] .
f i f o :− low always [3 sec] , rtm50 [3 sec] .
done :− l f u .
done :− l r u .
done :− f i f o .
random :− not done .
value (5) . value (1 5) . value (2 5) .

eiter@kr.tuwien.ac.at SRWS 2019 27/39

SR and MCS 4. DynaCon: Dynamic Configuration

1. Multi-Context Systems

2. MCS and Data Streams

3. MCS for Smart Cyber-Physical Systems

4. DynaCon: Dynamic Configuration

5. Conclusion

eiter@kr.tuwien.ac.at SRWS 2019 28/39

SR and MCS 4. DynaCon: Dynamic Configuration

DynaCon: Dynamic Knowledge-Based (Re)configuration
of Cyber-Physical Systems

Use Cases

traffic control power distribution grid network threat mgmnt rail transportation mgmnt
(Siemens) (Kelag) (Net4You) (LTE)

Idea

eiter@kr.tuwien.ac.at SRWS 2019 29/39

SR and MCS 4. DynaCon: Dynamic Configuration

DynaCon: Dynamic Knowledge-Based (Re)configuration
of Cyber-Physical Systems

Use Cases

traffic control power distribution grid network threat mgmnt rail transportation mgmnt
(Siemens) (Kelag) (Net4You) (LTE)

Idea

eiter@kr.tuwien.ac.at SRWS 2019 29/39

SR and MCS 4. DynaCon: Dynamic Configuration

DynaCon: Dynamic Knowledge-Based (Re)configuration
of Cyber-Physical Systems

Use Cases

traffic control power distribution grid network threat mgmnt rail transportation mgmnt
(Siemens) (Kelag) (Net4You) (LTE)

Idea

[Sarkar, 2011]

eiter@kr.tuwien.ac.at SRWS 2019 29/39

SR and MCS 4. DynaCon: Dynamic Configuration 4.1 Dynamic Configuration as MCS

Dynamic Configuration as MCS

Observation: the MCS framework is suited to model dynamic
configuration scenarios

structuring into interlinked components, evolving over time

modeling interlinkage through bridge rules

logical separation of concerns (SoC) / tasks

• Producers: contexts that produce information / output
E.g. sensors can be viewed as such

• Monitors: contexts that observe and aggregate data streams from producers,
and report (feed information) to configurators

• Configurators: contexts calculating the setup thru re-configuring the CPS;
may involve complex decision component, richer high level stream reasoning

• Actuators: contexts that change the setup in the CPS environment according
to the output of the configurators

SoC may be weakened (integrate actuators into producers)

eiter@kr.tuwien.ac.at SRWS 2019 30/39

SR and MCS 4. DynaCon: Dynamic Configuration 4.1 Dynamic Configuration as MCS

Scenario: Cooperative Intelligent Transporation Systems
Infrastructure as a CPS:
• communication via V2X
• roadside units (RSU) at intersections
• traffic participants are mobile sensors
• central traffic control center (TCS) is

connected to all RSUs

Producers:
• vehicles send their status
• traffic lights send signal phases

Monitors:
• stream aggr./event detection on RSUs
• high speed + volume sensor streams
• local view of traffic

Configurators:
• configurator is in the TCS
• optimize traffic flow via dynamic

configurating of the traffic lights
• global view of traffic

Actuators:
• on board of RSU

Intersection in Luxemburg

eiter@kr.tuwien.ac.at SRWS 2019 31/39

SR and MCS 4. DynaCon: Dynamic Configuration 4.1 Dynamic Configuration as MCS

Component Interface

SR

M

CTRL

IF DM

event channel

command channel
info req channel C

IF

acc proc_inf channel

CF−ALG

CTRL

Monitor’s concern:

Making the (variable data rate) input from the CPS accessible to the configurator by
(i) detecting event, (ii) discretizing and accumulating data streams, (iii) sending the
results via channels with limited data rate.

Configurator’s Information Channels

• sending information:
• Command Channel
• Information Request Channel

• receiving information
• Event Channel
• Accumulated Process Information Channel

Separate: Configuration Channel
• includes adaptive monitoring

eiter@kr.tuwien.ac.at SRWS 2019 32/39

SR and MCS 4. DynaCon: Dynamic Configuration 4.1 Dynamic Configuration as MCS

Monitor vs. Configurator: Interface, cont’d

Event representation
• messages me = (e, a, t, l, d, p),
• datalog encoding
event(eventType,sourceID,targetID,locationID,time,parameter).

Process information messages
• messages with tuples mp = (i, a, t, l, p, u), p = (d, v)

• datalog encoding
• information(infoType,sourceID,targetID,locationID,time,
value,unit).

Commands
• Set parameter (Parameter, Value)
• Get parameter (Parameter)
• Reset

• Activate/deactivate rules or queries
• Update knowledge base (Update Operation)

datalog encodings

• command(reset,sourceID,targetID).
• command(setParameter,sourceID,targetID,parameterID,
<filter>,value).

eiter@kr.tuwien.ac.at SRWS 2019 33/39

SR and MCS 4. DynaCon: Dynamic Configuration 4.1 Dynamic Configuration as MCS

Refined DynaCon Architecture

(Re-)Configurator

Stream Reasoner B

Stream Reasoner A
Bridge A

Controller
Module

Fog Environment

Event Channel

Process Information
Channel

Command
Channel

Information Request
Channel

Bridge B

Streaming Data

Domain Model

Vocabulary Vocabulary

Decision
Module

IF

IF

IF

IF 2

Configuration
Channel

P

P

P

M

M

C

P

Fog Environment Cloud Environment

User

User Action

Streaming Data

(i)

(ii)

Memory

Fog Request
Channel

Fog Request
Channel

Legend: Use Case Specifc

Generic

Optional

IF

eiter@kr.tuwien.ac.at SRWS 2019 34/39

SR and MCS 4. DynaCon: Dynamic Configuration 4.2 Distributed Stream Reasoning

Distributed Stream Processing
LARS engines Ticker [Beck et al., 2017], Laser [Bazoobandi et al., 2017]:
monolithic evaluation using a clock (ticks)

performance issues under load

as in stream processing, distribute computation

Distributed LARS (Outline):

streaming atoms: a | @t′a | �@t′a | �3a | �2a

cast time-point to interval semantics (support triggers)

decompose program P using an (stream) dependency graph

a component graph over it yields a network of subprograms P1, . . . ,Pm

• each Pi is run by a stream reasoner
• publishes streaming atoms to its successors,
• requests streaming atoms from its predecessors (for itself or successors)

• a special master node interfaces the outside world (publishes all externaal
atoms, wants all internal atoms)

stream-stratification (no cycle through windows) ensures a data pipeline

eiter@kr.tuwien.ac.at SRWS 2019 35/39

SR and MCS 4. DynaCon: Dynamic Configuration 4.2 Distributed Stream Reasoning

Component Graph

<<master>>

high :- value(V),alpha(V) at T in [3 s],(18) <= (V).
mid :- value(V),alpha(V) at T in [3 s],(12) <= (V),(V) < (18).

low :- value(V),alpha(V) at T in [3 s],(V) <= (12).
value(5).

value(15).
value(25).

[alpha(V)
,off

,rtm50]

lfu :- high always in [3 s].
lru :- mid always in [3 s].

fifo :- low always in [3 s],rtm50 in [3 s].
done :- lfu.
done :- lru.
done :- fifo.

random :- not done.
finish :- off in [1 s],done.

finish :- off in [1 s],random.

[done
,fifo

,finish
,high
,lfu
,low
,lru
,mid

,random
,value(V)]

[high
,low
,mid
,off

,rtm50
,value(V)]

eiter@kr.tuwien.ac.at SRWS 2019 36/39

SR and MCS 4. DynaCon: Dynamic Configuration 4.2 Distributed Stream Reasoning

Distributed Stream Reasoning System

Stream Reasoning Component

Data
stream

External
systems Answer

stream

Master

Ground

Next Trigger

Stream
Reasoner

Store

TriggerTrigger / Timer

Interval
DB

Ticker
encoding

Answer streams

Data/commands

Legend

Master: computes the component graph and spawns nodes in the network

eiter@kr.tuwien.ac.at SRWS 2019 37/39

SR and MCS 5. Conclusion

1. Multi-Context Systems

2. MCS and Data Streams

3. MCS for Smart Cyber-Physical Systems

4. DynaCon: Dynamic Configuration

5. Conclusion

eiter@kr.tuwien.ac.at SRWS 2019 38/39

SR and MCS 5. Conclusion

Conclusion

Summary
• MCS as versatile formalism, many extensions
• streaming data as an increasing computation setting

– cf. [Ellmauthaler, 2018] for MCS and streaming

• Cyber-Physical Systems (CPS) as application area of MCS
• DynaCon: dynamic configuration, a challenging need in CPS
• distributed stream reasoning: LARS

– BigSR, Strider [Ren, 2018]: hybrid adaptive distributed RSP engine,
compile into Apache Spark / Flink

Issues and Ongoing/Future Work
• picture the role of MCS
• refined complexity

– communication, memory, parallelization

• component interface languages
• adaptive monitoring: control language
• develop distributed LARS

eiter@kr.tuwien.ac.at SRWS 2019 39/39

References I

Chitta Baral and V. S. Subrahmanian.
Stable and extension class theory for logic programs and default logics.
J. Autom. Reasoning, 8(3):345–366, 1992.

Hamid R. Bazoobandi, Harald Beck, and Jacopo Urbani.
Expressive stream reasoning with laser.
In Claudia d’Amato, Miriam Fernández, Valentina A. M. Tamma, Freddy Lécué, Philippe Cudré-Mauroux,
Juan F. Sequeda, Christoph Lange, and Jeff Heflin, editors, The Semantic Web - ISWC 2017 - 16th
International Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part I, volume
10587 of Lecture Notes in Computer Science, pages 87–103. Springer, 2017.

Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink.
Towards a logic-based framework for analyzing stream reasoning.
In Irene Celino, Oscar Corcho, Daniele Dell’Aglio, Emanuele Della Valle, Markus Krötzsch, and Stefan
Schlobach, editors, Proceedings 3rd International Workshop on Ordering and Reasoning (Ordring 2014),
October 19-20, 2014 Riva del Garda, Trentino, Italy, number 1303 in CEUR Workshop Proceedings, pages
11–22. CEUR-WS.org, 2014.
Online http://ceur-ws.org/Vol-1303/.

Harald Beck, Minh Dao-Tran, and Thomas Eiter.
Answer update for rule-based stream reasoning.
In Q. Yang and M. Wooldridge, editors, Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI-15), July 25-31, 2015, Buenos Aires, Argentina, pages 2741–2747. AAAI Press/IJCAI,
2015.

Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink.
LARS: A logic-based framework for analyzing reasoning over streams.
In Blai Bonet and Sven Koenig, editors, Proceedings 29th Conference on Artificial Intelligence (AAAI ’15),
January 25-30, 2015, Austin, Texas, USA, pages 1431–1438. AAAI Press, 2015.

http://ceur-ws.org/Vol-1303/

References II

Harald Beck, Thomas Eiter, and Christian Folie.
Ticker: A system for incremental asp-based stream reasoning.
TPLP, 17(5-6):744–763, 2017.

Harald Beck, Minh Dao-Tran, and Thomas Eiter.
LARS: A logic-based framework for analytic reasoning over streams.
Artif. Intell., 261:16–70, 2018.

Gerhard Brewka and Thomas Eiter.
Equilibria in heterogeneous nonmonotonic multi-context systems.
In AAAI, pages 385–390, 2007.

G. Brewka, F. Roelofsen, and L. Serafini.
Contextual default reasoning.
In International Joint Conference on Artificial Intelligence (IJCAI 07), 2007.

Gerhard Brewka, Thomas Eiter, Michael Fink, and Antonius Weinzierl.
Managed Multi-Context Systems.
In IJCAI, pages 786–791, 2011.

Gerhard Brewka, Stefan Ellmauthaler, and Jörg Pührer.
Multi-Context Systems for Reactive Reasoning in Dynamic Environments.
In ECAI, pages 159–164, 2014.

Gerhard Brewka, Stefan Ellmauthaler, Ricardo Gonçalves, Matthias Knorr, João Leite, and Jörg Pührer.
Reactive multi-context systems: Heterogeneous reasoning in dynamic environments.
Artif. Intell., 256:68–104, 2018.

References III

Pedro Cabalar, Stefania Costantini, and Andrea Formisano.
Multi-context systems: Dynamics and evolution.
In Bart Bogaerts and Amelia Harrison, editors, Proceedings of the 10th Workshop on Answer Set
Programming and Other Computing Paradigms co-located with the 14th International Conference on Logic
Programming and Nonmonotonic Reasoning, ASPOCP@LPNMR 2017, Espoo, Finland, July 3, 2017.,
volume 1868 of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

Stefania Costantini and Giovanni De Gasperis.
Bridge rules for reasoning in component-based heterogeneous environments.
In José Júlio Alferes, Leopoldo E. Bertossi, Guido Governatori, Paul Fodor, and Dumitru Roman, editors,
Rule Technologies. Research, Tools, and Applications - 10th International Symposium, RuleML 2016, Stony
Brook, NY, USA, July 6-9, 2016. Proceedings, volume 9718 of Lecture Notes in Computer Science, pages
97–112. Springer, 2016.

Minh Dao-Tran and Thomas Eiter.
Streaming multi-context systems.
In Carles Sierra, editor, Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI-17), August 19-25, 2017, Melbourne, Australia, pages 1000–1007. AAAI Press/IJCAI, 2017.

Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner.
Dynamic distributed nonmonotonic multi-context systems.
In Gerd Brewka, Miroslaw Truszczyński, and Victor Marek, editors, NonMon@30: Thirty Years of
Nonmonotonic Reasoning, pages 63–88. College Publications, London, UK, 2011.

Thomas Eiter, Mustafa Mehuljic, Christoph Redl, and Peter Schüller.
User guide: dlvhex 2.x.
Technical Report INFSYS RR-1843-15-05, Institut für Informationssysteme, Technische Universität Wien,
A-1040 Vienna, Austria, September 2015.

References IV
Thomas Eiter, Tobias Kaminski, Christoph Redl, Peter Schüller, and Antonius Weinzierl.
Answer set programming with external source access.
In Giovambattista Ianni, Domenico Lembo, Leopoldo E. Bertossi, Wolfgang Faber, Birte Glimm, Georg
Gottlob, and Steffen Staab, editors, Reasoning Web. Semantic Interoperability on the Web, 13th
International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures, number 10370 in
LNCS, pages 204–275. Springer, 2017.

Stefan Ellmauthaler and Jörg Pührer.
Asynchronous multi-context systems.
In Thomas Eiter, Hannes Strass, Miroslaw Truszczynski, and Stefan Woltran, editors, Advances in
Knowledge Representation, Logic Programming, and Abstract Argumentation - Essays Dedicated to
Gerhard Brewka on the Occasion of His 60th Birthday, volume 9060 of Lecture Notes in Computer Science,
pages 141–156. Springer, 2015.

Stefan Ellmauthaler.
Multi-Context Reasoning in Continuous Data-Flow Environments.
PhD thesis, Leipzig University, Germany, 2018.
http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa2-214577.

Chiara Ghidini and Fausto Giunchiglia.
Local models semantics, or contextual reasoning = locality + compatibility.
Artificial Intelligence, 127(2):221–259, 2001.

F. Giunchiglia and L. Serafini.
Multilanguage hierarchical logics, or: How we can do without modal logics.
Artificial Intelligence, 65(1):29–70, 1994.

Ricardo Gonçalves, Matthias Knorr, and João Leite.
Evolving Multi-Context Systems.
In ECAI, pages 375–380, 2014.

http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa2-214577

References V

Yuri Gurevich, Dirk Leinders, and Jan Van den Bussche.
A theory of stream queries.
In Marcelo Arenas and Michael I. Schwartzbach, editors, Database Programming Languages, 11th
International Symposium, DBPL 2007, Vienna, Austria, September 23-24, 2007, Revised Selected Papers,
volume 4797 of Lecture Notes in Computer Science, pages 153–168. Springer, 2007.

Harald Beck, Minh Dao-Tran, and Thomas Eiter.
Contrasting RDF stream processing semantics.
In Guilin Qi, Kouji Kozaki, Jeff Z. Pan, and Siwei Yu, editors, Semantic Technology – 5th Joint International
Semantic Technology Conference (JIST 2015), November 11-13, 2015, Yichang, China, Revised Selected
Papers, number 9544 in LNCS, pages 289–298. Springer International Publishing Switzerland, 2015.

Özgür L. Özçep.
Representation Theorems in Computer Science A Treatment in Logic Engineering.
PhD thesis, Universität zu Lübeck, Germany, 2017.
Habilitation Thesis.

Xiangnan Ren.
Distributed RDF Stream Processing and Reasoning.
PhD thesis, Université Paris-Est, France, 2018.
https://tel.archives-ouvertes.fr/tel-02083973/document.

F. Roelofsen and L. Serafini.
Minimal and absent information in contexts.
In Proc. IJCAI-05, 2005.

S. Sarkar.
Autonomous Perception and Decision Making in Cyper-Physical Systems.
PhD thesis, Penn State University Graduate School, PA 16802, USA, 2011.

https://tel.archives-ouvertes.fr/tel-02083973/document

SR and MCS 6. 6.1 Window Functions

Data Snapshots: Window Functions

Important aspect of stream processing: use only window view of data, i.e., limited
observability at each point in time

Different types of windows in practice:

• time-based windows (within time bounds)

• tuple-based windows (number of tuples, count)

• partition-based windows (split input data, process separately)

• in addition, sliding or tumbling (consider atom repeatedly / once)

Model data snapshots (windows) as substreams of a stream

Formally, windows are functions

w : (S, t) 7→ S′

assigning each stream S = (T, υ) and t ∈ T a substream S′ ⊆ S, which means
S′ = (T ′, υ′) such that T ′ ⊆ T and υ′(t) ⊆ υ(t), for all t ∈ T ′

eiter@kr.tuwien.ac.at SRWS 2019 6/11

SR and MCS 6. 6.1 Window Functions

Window Functions: Example

time-based window w1,5(1)
τ , looking back 1 and forward 5 steps (at most), with step size 1

(i.e., sliding)

36 37 38 39 40 41 42 43 44 45

•

•

•

•

` u

tra
m(

a 1,
p 1)

tra
m(

a 2,
p 2)

exp
(a 2,

p 3)

exp
(a 1,

p 3)

S′ = w(S, t)

eiter@kr.tuwien.ac.at SRWS 2019 7/11

SR and MCS 6. 6.1 Window Functions

Window Functions: Example

time-based window w1,5(1)
τ , looking back 1 and forward 5 steps (at most), with step size 1

(i.e., sliding)

36 37 38 39 40 41 42 43 44 45

•

•

•

•

` u

tra
m(

a 1,
p 1)

tra
m(

a 2,
p 2)

exp
(a 2,

p 3)

exp
(a 1,

p 3)

S′ = w1,5,1
τ (S, 40) = ([39, 45],


40 : {tram(a2, p2)},
43 : {exp(a2, p3)},
44 : {exp(a1, p3)}

)

eiter@kr.tuwien.ac.at SRWS 2019 7/11

SR and MCS 6. 6.2 Formulas

LARS Formulas

LARS language: extend logic language stream access / processing

Atoms from A (atomic formulas a)

Boolean connectives ∧, ∨,→, ¬
Window operators � (substream generation), . (reset to original stream)

�w ⇐⇒ w(S, t)
Examples
• �τ10 := �w10,0(1)

τ last 10 units (sliding time-based)

• �τ+5 := �w0,5(1)
τ next 5 units

• �#n = �
wn,0
last n tuples (sliding tuple-based window)

Temporal operators 3, 2, @t

@20 tram(a2, p1) �τ+53exp(a1, p3)

Note: nesting of windows is possible!

�τ602 �τ 53tramAt(p1) �# n �τ 53tramAt(p1)

eiter@kr.tuwien.ac.at SRWS 2019 8/11

SR and MCS 6. 6.2 Formulas

Regular Windows & Plain Bridge Rules
Regular Windows

• pathologic window functions w(S, t) may e.g. interpret t as Gödel number of a
computation; thus we hit undecidability.

• A window function w(S, t) is regular, if
(i) w(S, t)(t′), i.e., the data in the window w(S, t) at time t′, depends only on S from

t′, t′+1 etc. onwards (allows for data dropping)

(ii) for some l ≥ p ≥ 0 polynomial in |kbi(0)|, we have w(S, t) = w(S′, t + p) for every
t and streams S, S′ that coincide on the past (future) l time points around t resp.
t+p having data (informally, w is periodic and l is a limit for evaluation)

• small (polynomial-size) time-based, tuple-based windows are regular.

Plain Bridge Rules

simply memorizing the data within the limit with their actual time points is not
feasible under a space constraint wrt. |kbi(0)|
a (schematic) bridge rule is plain, if time references are to evaluation time (�0@Z>)
with fixed offset os (Z±os)

For plain bridge rules (cf. running example), full memorization can be avoided

Lemma. If bri is plain and any window occurring in it is regular, a sufficient fragment of
each input stream Ski to evaluate bri can be maintained in polynomial space.

eiter@kr.tuwien.ac.at SRWS 2019 9/11

SR and MCS 6. 6.3 Issues with MCS for Smart CPS

MCS limitations for Smart CPS

Issues [Costantini and Gasperis, 2016], [Cabalar et al., 2017]

• Grounded (Propositional) Knowledge
⇒ expand initial grounding of open
rules gradually (fixpoint)

• Logical Omniscience and Unbounded
Resources
⇒ delay bridge rule application with
commitment

• Update Problem (by Environment)
⇒ environment update prior to mngmt
update (tMCS)

• Full System Knowledge
⇒ look up yellow pages for neighbors

• Static System
⇒ yellow pages of current contexts
(cf. dynamic configuration [Dao-Tran et al.,
2011])

• Unique Source
⇒ dynamic name binding: pick suitable
context (by role)

• Uniform Knowledge Representation Format
⇒ model / KB alignment

• Equilibria Computation and Consistency
Check
black box (privacy) vs glass box contexts
(efficiency)

Proposal: dynamic mMCS (dmCS), special contexts (e.g. yellow pages)

But: formalization amenable to analysis ?? (cf. aMCS)

eiter@kr.tuwien.ac.at SRWS 2019 10/11

SR and MCS 6. 6.4 CNN: Framework Implementations

CNN: Framework Implementation

ndnSIM 2.0

Content Store Tracer
fills

Solving Process

Python: process.py

Solver

DLVHEX 2.5: solver.hex

calls

External Predicates

Python: solver.py

queries

Router Server Time Number of Interests

1 1 1 15

1 2 1 0

1 3 1 37

2 1 1 0

2 2 1 23

2 3 1 7

Event

Database

resolves

external atoms

triggers periodically

for every router

ndnSIM: a general network simulator

solver.hex: implements a LARS fragment using the dlvhex solver (hybrid ASP)

solver.py: comprises implementation of external predicates, e.g.

• alpha/1: returns the estimated α̂ value of the Zipf distribution

Later: Ticker implementation

eiter@kr.tuwien.ac.at SRWS 2019 11/11

	Multi-Context Systems
	MCS and Data Streams
	Streaming MCS
	Equilibria and Local Stability
	Reasoning Problems

	MCS for Smart Cyber-Physical Systems
	MCS for Dynamic Configuration

	DynaCon: Dynamic Configuration
	Dynamic Configuration as MCS
	Distributed Stream Reasoning

	Conclusion
	Appendix
	Window Functions
	Formulas
	Issues with MCS for Smart CPS
	Framework Implementations

