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SR and MCS 1. Multi-Context Systems

Multi-Context Systems

Contextual Reasoning: model information
interlinkage of knowledge bases / agents
• information flow between KBs via bridge rules

Mr.1 : row(X)← (Mr.2 : sees_row(X))
Mr.2 : col(Y)← (Mr.1 : sees_col(Y))

• equilibrium ensures aligned information

Ghidina & Giunchiglia’s Magic Box

Different early varieties
• Trento School (Giunchiglia, Serafini et al.):

• Heterogeneous MCS [Giunchiglia and Serafini, 1994]

• Nonmonotonic bridge rules [Roelofsen and Serafini, 2005]

• Extension to Contextual Default Logic [Brewka et al., 2007]

• nonmonotonic multi-context systems (MCS) [Brewka and E_, 2007]

• managed MCS (mMCS) [Brewka et al., 2011]
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SR and MCS 1. Multi-Context Systems

Nonmonotonic Multi-Context Systems (MCS)

Multi-Context System

Formally, a Multi-Context System

M = (C1, . . . ,Cn)

consists of contexts

Ci = (Li, kbi, bri), i ∈ {1, . . . , n},
where
• each Li is a “logic,”

• each kbi is a knowledge base in Li, and

• each bri is a set of Li-bridge rules over M’s logics.
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SR and MCS 1. Multi-Context Systems

Logic

A logic L is a tuple L = (KBL,BSL,ACCL), where

• KBL is a set of well-formed knowledge bases, each being a set (of “formulas”)

• BSL is a set of possible belief sets, each being a set (of “formulas”)

• ACCL : KBL → 2BSL assigns each KB a set of acceptable belief sets

Thus, logic L caters for multiple extensions of a knowledge base.

Bridge Rules

A Li-bridge rule over logics L1, . . . ,Ln, 1 ≤ i ≤ n, is of the form

s← (r1 : p1), . . . , (rj : pj), not(rj+1 : pj+1), . . . , not(rm : pm)

where kb ∪ {s} ∈ KBi for each kb ∈ KBi, each rk ∈ {1, . . . , n}, and each pk

is in some belief set of Lrk .

Note: such rules are akin to rules of normal logic programs
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Example (Authors)

Suppose a MCS M = (C1,C2) has contexts that express the individual views of
a paper by the two authors.

C1:

• L1 = Classical Logic

• kb1 = { unhappy ⊃ revision }
• br1 = { unhappy← (2 : work) }

C2:

• L2 = Reiter’s Default Logic

• kb2 = { good : accepted/accepted }
• br2 = { work← (1 : revision),

good ← not(1 : unhappy) }
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SR and MCS 1. Multi-Context Systems

Equilibrium Semantics

Belief State

A belief state is a sequence S = (S1, . . . , Sn) of belief sets Si in Li

Applicable Bridge Rules

For M = (C1, . . . ,Cn) and belief state S=(S1, . . . , Sn), the bridge rule

s← (r1 : p1), . . . , (rj : pj), not(rj+1 : pj+1), . . . , not(rm : pm)

is applicable in S if (1) pi ∈ Sri , for 1 ≤ i ≤ j, and (2) pk 6∈ Srk , for j < k ≤ m.

Equilibrium
A belief state S = (S1, . . . , Sn) of M is an equilibrium iff for all i = 1, . . . , n,

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri is applicable in S}) .
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Equilibrium Semantics, cont’d

Example, cont’d

Reconsider M = (C1,C2):

kb1 = { unhappy ⊃ revision } (Classical Logic)

br1 = { unhappy← (2 :work) }

kb2 = { good : accepted/accepted } (Default Logic)

br2 = { work← (1 : revision),
good ← not(1 : unhappy) }

M has two equilibria:

E1 = (Th({unhappy, revision}),Th({work})) and

E2 = (Th({unhappy ⊃ revision}), Th({good, accepted}))
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Managed MCS
MCS: pure information alignment, fully static

introduce context manager, to update/change the KB

• Bridge rules:

op(f )← (c1: p1), . . . , (cj: pj), not(cj+1: pj+1), . . . , not(cm: pm).

• management function mng : 2FOP
LS × KBLS → 2(KBLS×ACCLS) \ {∅}

assigns updates commands + KB a follow-up KB + evaluation semantics

managed context Ci = (LSi, kbi, bri,OPi,mngi) with

• LSi = (BSLSi ,KBLSi ,ACCLSi ) a logic suite,
• kbi ∈ KBLSi a knowledge base,
• bri a set of bridge rules for Ci,
• OPi a management base (commands), and
• mngi a management function over LSi and OPi.

Managed Multi-Context System (mMCS) M = (C1, . . . ,Cn) are stateful, form the
basis of other MCS (eMCs, rMCS, aMCS, sMCS, dMCS, tMCS)
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Managed MCS, cont’d

Example (Diseases)
C1: relational database on disease treatments

kb1 = { treat(pen, str_pneu, pneu, evd), treat(azith, leg_pneu, leg, evd), ineff (pen, leg_pneu)}

conclude likely effects using C2.

br1 = { treat(X,B, I, likely)←(1 : treat (X,B, _, _)) ,(2 : B rdf :causes I) .}.

C2: RDF-triple store on disease causations.

kb2 = {str_pneu rdf :causes men, leg_pneu rdf :causes atyp_pneu}.

C3: bacteria ontology (DL)
C4: generalized logic program deriving possible medication effects:

br4 = { add(isa(X, Y))← (3 : (X v Y)) .

add(eff (X,B))← (1 : eff (X,B)) .

upd(not eff (X,B))← (1 : ineff (X,B)) .},
Semantics

Applicable bridge rule heads: appi(S) = {hd(r) | r ∈ bri ∧ S |= body(r)}.
Equilibrium: S = (S1, . . . , Sn) iff for every 1 ≤ i ≤ n some
(kb′i ,ACCLSi )∈mngi(appi(S), kbi) exists s.t. Si ∈ ACCLSi (kb′i ).
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SR and MCS 2. MCS and Data Streams

Streaming World

Sensors, networks, mobile devices:
• getting to a connected world...

Pushing rather than pulling of data

Dynamic streams of data, potentially infinite
• low frequency changes (meter reading)

• high frequency changes (stock trading)

Continuous computation / evaluation
• synchronous vs. asynchronous

Reference to time

Poses challenges to MCSs
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Example: Cooperative Robots

3RA 4

5 6 7 D1

89RB

2 1 D2P2

P1

4

In a mall, robots must deliver packages to destinations

RA must deliver package P1 (at 9) to destination D1 (7)

RB must deliver package P2 (at 4) to destination D2 (1)

Minimize travel distance: agree to pick up other package and exchange
(e.g. at node 5)

Agreement may be challenging: robots already move, connections turn out
unusable (too many people around), . . .

Setting: dynamic monitoring of usability

sensors for position, occupation etc.
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SR and MCS 2. MCS and Data Streams

MCS Features

(static) MCS, mMCS: have an equilibrium (fixpoint) semantics

(dynamic) reactive MCS (rMCS) [Brewka et al., 2014,2018],
evolving MCS (eMCS) [Gonçalves et al., 2014]:

• computing equilibria is timeless

(dynamic) asynchronous MCS (aMCS) [Ellmauthaler and Pührer, 2015]:

• physical computation time, transfer time are disregarded
• no baseline mechanism to achieve equilibrium

streaming MCS (sMCS) [Dao-Tran and E_, 2017]:

• bridge rules with window atoms (simple LARS formulas [Beck et al., 2018]) to
access input streams

• model computation time and data transfer time
• internal asynchronous execution control (restart/wait on eval requests)
• run-based semantics, with feedback equilibria to enforce local stability

in runs (avoid infinite loops, and generalize rMCS, eMCS)

additional stream reasoning inside contexts possible!
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sMCS by Example (cont’d)

ACCplanning

update(pos(X, Y, L) ←(4 : pos(X, Y, L))
update(block(X, Y)) ←(3 : block(X, Y))
remove(block(X, Y)) ←not (3 : �32block(X, Y)),

(1 : block(X, Y)

C1 ACCplanning

update(m1(X)) ←(1 : m(X))
update(pos(X, Y, L) ←(5 : pos(X, Y, L))
update(block(X, Y)) ←(3 : block(X, Y))
remove(block(X, Y)) ←not (3 : �32block(X, Y)),

(2 : block(X, Y))

C2

block(X, Y)← cr(X, Y)

update(cr(X, Y))← (6 : �82n(X, Y, N)), N > 10

C3C4 C5C6

sensor context Ci, 4≤ i≤ 6 feeds sensor input to Ci−3

C4 (C5) tells position pos(X, Y, L) of RA (RB) on X → Y, L ∈ {0%, . . . , 100%}
C3 gets sensor data of C6, infers blocked connections and sends this info to C1,C2

C1 (C2): shortest route for RA (RB) to D1 (D2), with blocked connections, meeting point m(X)

bridge rules: window atoms (6: �8 2n(X, Y,N)), (3: �3 2block(X, Y))

update(cr(X, Y))← (6 : �82n(X, Y,N)),N > 10 accesses C6’s output
• “store link X → Y is crowded, if C6 reported in the last 8 mins always 10 people on it.”

remove(block(X, Y))← not (3 : �32block(X, Y)), (2 : block(X, Y))

• “unblock link X → Y unblocked, if C3 didn’t report it the last 3 mins always blocked.”
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SR and MCS 2. MCS and Data Streams 2.1 Streaming MCS

Run-based Semantics

A state of Ci is a triple si=(si, oi, kbi) where
• si⊆{IE, SE} is the execution status (intend to execute / start to execute)
• oi ⊆ Beli is the output belief set streamed to other contexts, unless oi = ε;
• kbi is the local KB (which can evolve).

runs are constrained state sequences s = s(0), . . . , s(t) of global states
s(t′) = (s1(t′), . . . , sn(t′)), where each si(t′) is state of Ci:
• delay intention IE to actual start SE (busy) or restart
• respect data transfer time ∆ki, computation time fi(bri, kbi)

Example (run trace) (focus on C1,C2; ISE1,2 = {IE1, SE1, IE2, SE2}, ISE2 = {IE2, SE2})

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ISE1,2 {m(5)}1 ISE2 ISE1,2 ∅1 ∅2 ISE1,2 IE1 SE1

∅1
{m(6)}1

∅2
ISE1,2 ∅1 ∅2

• sensors C4, C5 stream at 5k≥ 0, C6 streams continuously
• C1,C2,C3 run in pushing mode; C1 ignores new input when busy; C2, C3 restart.
• ∆12 = ∆31 = 1 and ∆ij = 0 otherwise
• f1(br1, kb1)=2, f2(br2, kb2)=4, and f3(br3, kb3)=1 for all kbi

• C3 sends block(5, 6) at t = 10 (ignored by C1 at 11)
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SR and MCS 2. MCS and Data Streams 2.2 Equilibria and Local Stability

Idealized Runs

Aim: capture rMCS and eMCS which feature step-wise equilibrium computation at
zero cost (= infinite speed)

Naive Approach: set in runs ∆ki = fi = 0
• does not work: local KBs kbi could not change (but rMCS/eMCS runs are stateful)

Way out: extend time ontology with infinitesimally small chronon ε

• computation time is ε
• t < t + ε and t + ε = t + kε for each k ∈ N > 0
• transfer time fi = 0

In an idealized run s = (s0, . . . , stend ),

oi(t+1) = oi(t+ε) and kbi(t+1) = kbi(t+ε),
where
• oi(t + ε) = ACC(kbi(t + ε)) and

• kbi(t + ε) = mngi(appεi (s, t), kbi(t))

Emulation Property: runs of an rMCS M (resp. eMCS M from a natural class) can
be emulated by idealized runs of a corresponding sMCS Ms
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SR and MCS 2. MCS and Data Streams 2.2 Equilibria and Local Stability

Feedback Equilibria

Total asynchrony can be uncomfortable if contexts depend on each other

Suppose also C2 suggests a meeting point, imported by C1 into kb1 via

update(m2(X))← (2:m(X))

Meeting mismatch: do a further round (e.g., follow other proposal)

Assume f1(br1, kb1)=2, f2(br2, kb2) = 3 for all kbi , ∆12 = 1, other costs=0:

0 1 2 3 4 5 6 7 8 9

ISE1,2 ISE1,2ISE1,2 ISE1,2{m(5)}1 {m(6)}1 {m(5)}1

{m(6)}2 {m(5)}2 {m(6)}2

computing an agreed meeting point loops indefinitely
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SR and MCS 2. MCS and Data Streams 2.2 Equilibria and Local Stability

Feedback Equilibria, cont’d

Key ideas:
• consider strongly connected components (SCCs) via

an import graph (Ci → Cj, if (j:A) occurs in bri)

• for equilibrium computation, dispense streaming data from outside

• any Ci can request, while computing, at time t stability of its SCC Ci:

• the contexts in Ci are restarted with input at texe

• at some t′′≥ t, either Ci reports an equilibrium, or Ci restarts its contexts
with input at time t′′ if no equilibrium exists

Feedback Equilibrium of Ci wrt. run s at time t: for every Cij ∈ Ci,

belief set BSij ∈ ACCij(mngij(appε
ij(s, t), kbij(t)))

• intuitively, run in idealized mode

• input to Ci is frozen at t

• inside Ci, cyclic information flow is respected
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SR and MCS 2. MCS and Data Streams 2.2 Equilibria and Local Stability

Locally Stable Runs

ρ denotes a stability request, EQ is a new status

Informally a locally stable run for C is a run s = (s0, . . . , stend ), s.t.
• requests for local stability of C at time t are granted at t′ ≥ t;
• to serve a request, all C ∈ Ci switch to equilibrium computation from t;
• a feedback eq. is returned at output time tout if one exists, else C is restarted.

A run s is locally stable, if it is locally stable for each SCC

Example

0 1 2 3 4 5 6 7

ISE1,2 ISE1,2

ρ1

{m(5)}1

{m(6)}2
EQ1,2 EQ1,2 EQ1,2 {m(6)}1

C1 realizes at t = 3 that C2’s suggestion does not match his of t = 2.

C1 requests local stabilization for C1 = {C1,C2}
meeting at node 6 yields an equilibrium at time 7
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SR and MCS 2. MCS and Data Streams 2.3 Reasoning Problems

Reasoning

Setting: sMCS M=(C1, . . . ,Cn)

• sensor contexts O=Cj,Cj+1, . . . ,Cn

• reading r=r(0), . . . , r(t): sensor data stream
• periodic decision to execute, permanent ignore/restart
• algs to evaluate bri, mngi, ACCi (compute some BSi ∈ ACCi(kbi))

Monitoring: watch the past
• M, r |=b Ci(a): a is believed at Ci at time t in some run s = (s0, . . . , st) for r
• M, r |=bs Ci(a): . . . some locally stable run . . .

Prediction: consider future data
• M, r |=t′

x Ci(a): does M, r′ |=x Ci(a) for an extension r′ of r up to t′?

• M, r |=∞x Ci(a): does M, r |=t′
x Ci(a) for some t′?
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SR and MCS 2. MCS and Data Streams 2.3 Reasoning Problems

Reasoning: Complexity

Monitoring and Prediction with bounded horizon (M, r |=t′
x Ci(a)) is decidable, but

intractable in general

Unbounded Prediction (M, r |=∞x Ci(a)) is undecidable in general, due to

(U1) kbi, (U2) unbounded streams, (U3) pathologic window evaluation

Prediction is in PSpace, if

• each kbi remains in polynomial size,
• context evaluation (bri, mngi, ACCi) feasible in polynomial space,
• the bridge rules bri are plain (roughly, time references at eval time are fixed

offsets) and all windows are regular (e.g., small time/tuple-based windows)

⇒ streams manageable in pol. space (intuitively, recent input)

Tractability (moreover logspace feasibility) needs severe restrictions

Links to work on streams in databases [Gurevich et al., 2007] and ontologies
[Özçep, 2017], and recent work at Oxford and Linköping
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MCS for Smart Cyber-Physical Systems (CPS)

Distributed systems with lots
of sensors

Possible embedding in the
Internet of Everything

“Friendly & Kind” (F&K)
systems, e.g. in e-health

Bridge rules as vital elements
for knowledge exchange

mMCS are nicely abstract, but
limitations require extensions;
cf. [Costantini and Gasperis,
2016], [Cabalar et al., 2017]

[Costantini and Gasperis, 2016]

Proposals:
• dynamic mMCS (dMCS) [Costantini and Gasperis, 2016], [Dao-Tran et al.,

2011]: link at runtime
• timed mMCS (tMCS) [Cabalar et al., 2017]: update state prior to bridge rule

evaluation
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MCS for Smart Cyberphysical Systems, cont’d

MCS Rationale

• stay at the abstract level

• use MCS more as modeling tool

• heterogeneous components as contexts

• interlinkage and exchange

• also useful for simulation

Scenario: Dynamic Configuration

• go beyond monitoring / prediction

• dynamically change / adapt the behavior of components
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SR and MCS 3. MCS for Smart Cyber-Physical Systems 3.1 MCS for Dynamic Configuration

Content-Centric Networks

The content in the network is
addressed by “name” – physical
location is irrelevant

Content-Centric Routers (CCR) can
route interest packages, cache and
adapt media chunks in highly dynamic
conditions

Cache sizes are limited – efficient
caching strategies needed

Consumer

Consumer

Consumer Consumer

Producer

0
         

3
         

2
         

1
4

         
Producer

Example
Factor: Current daytime
• Morning: few users interested in different media
• Evening: many users are watching a small amount of popular series

Possible caching strategies for the scenarios above:

• Random: replaces a random chunk in the cache with a random recent chunk
• LFU: a new chunk replaces the Least Frequently Used chunk
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Extended CCR – Intelligent Caching Agent

Reasoner

Networking 

UnitEvent

Database

KB

parameters

state

snapshot

commands

configuration

C
O
N
T
R
O
L
L
E
R

Output

Input

Cache

chunks

Standard CCN RouterDecision unit

Legacy components of a CCR:

• networking unit: implements network interfaces
• controller: manages content adaptation, routing and caching

Extended architecture:

• KB system: choose controller’s decision making strategy
• desired: human-readable KR language for admin actions
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CCR Administration Problem

LARS Encoding

high← value(V),�k sec@T alpha(V), 18 ≤ V.

mid← value(V),�k sec@T alpha(V), 12 ≤ V < 18.
low← value(V),�k sec@T alpha(V), V ≤ 12.
lfu← �k sec� high.
lru← �k sec� mid.
fifo← �k sec� low,�[k sec]3 rtm50.
done← lfu ∨ lru ∨ fifo.
random← not done.

A simple prototype, using ndnSIM (a general network simulator) and solver.hex
(implements a LARS fragment usng dlvhex (hybrid ASP) was done

Later, LARS Ticker [Beck et al., 2017] encodings (for k = 3):

high :− value (V) , alpha (V) a t T [3 sec ] , 18 <= V.
mid :− value (V) , alpha (V) a t T [3 sec ] , 12 <= V, V < 18.
low :− value (V) , alpha (V) a t T [3 sec ] , V <= 12.
l f u :− high always [3 sec ] .
l r u :− mid always [3 sec ] .
f i f o :− low always [3 sec ] , rtm50 [3 sec ] .
done :− l f u .
done :− l r u .
done :− f i f o .
random :− not done .
value ( 5 ) . value ( 1 5 ) . value ( 2 5 ) .
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DynaCon: Dynamic Knowledge-Based (Re)configuration
of Cyber-Physical Systems

Use Cases

traffic control power distribution grid network threat mgmnt rail transportation mgmnt
(Siemens) (Kelag) (Net4You) (LTE)

Idea
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SR and MCS 4. DynaCon: Dynamic Configuration

DynaCon: Dynamic Knowledge-Based (Re)configuration
of Cyber-Physical Systems

Use Cases

traffic control power distribution grid network threat mgmnt rail transportation mgmnt
(Siemens) (Kelag) (Net4You) (LTE)

Idea

[Sarkar, 2011]
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Dynamic Configuration as MCS

Observation: the MCS framework is suited to model dynamic
configuration scenarios

structuring into interlinked components, evolving over time

modeling interlinkage through bridge rules

logical separation of concerns (SoC) / tasks

• Producers: contexts that produce information / output
E.g. sensors can be viewed as such

• Monitors: contexts that observe and aggregate data streams from producers,
and report (feed information) to configurators

• Configurators: contexts calculating the setup thru re-configuring the CPS;
may involve complex decision component, richer high level stream reasoning

• Actuators: contexts that change the setup in the CPS environment according
to the output of the configurators

SoC may be weakened (integrate actuators into producers)
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Scenario: Cooperative Intelligent Transporation Systems
Infrastructure as a CPS:
• communication via V2X
• roadside units (RSU) at intersections
• traffic participants are mobile sensors
• central traffic control center (TCS) is

connected to all RSUs

Producers:
• vehicles send their status
• traffic lights send signal phases

Monitors:
• stream aggr./event detection on RSUs
• high speed + volume sensor streams
• local view of traffic

Configurators:
• configurator is in the TCS
• optimize traffic flow via dynamic

configurating of the traffic lights
• global view of traffic

Actuators:
• on board of RSU

Intersection in Luxemburg
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Component Interface

SR

M

CTRL

IF DM

event channel

command channel
info req channel C

IF

acc proc_inf channel

CF−ALG

CTRL

Monitor’s concern:

Making the (variable data rate) input from the CPS accessible to the configurator by
(i) detecting event, (ii) discretizing and accumulating data streams, (iii) sending the
results via channels with limited data rate.

Configurator’s Information Channels

• sending information:
• Command Channel
• Information Request Channel

• receiving information
• Event Channel
• Accumulated Process Information Channel

Separate: Configuration Channel
• includes adaptive monitoring
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SR and MCS 4. DynaCon: Dynamic Configuration 4.1 Dynamic Configuration as MCS

Monitor vs. Configurator: Interface, cont’d

Event representation
• messages me = (e, a, t, l, d, p),
• datalog encoding
event(eventType,sourceID,targetID,locationID,time,parameter).

Process information messages
• messages with tuples mp = (i, a, t, l, p, u), p = (d, v)

• datalog encoding
• information(infoType,sourceID,targetID,locationID,time,
value,unit).

Commands
• Set parameter (Parameter, Value)
• Get parameter (Parameter)
• Reset

• Activate/deactivate rules or queries
• Update knowledge base (Update Operation)

datalog encodings

• command(reset,sourceID,targetID).
• command(setParameter,sourceID,targetID,parameterID,
<filter>,value).
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SR and MCS 4. DynaCon: Dynamic Configuration 4.1 Dynamic Configuration as MCS

Refined DynaCon Architecture

(Re-)Configurator

Stream Reasoner B

Stream Reasoner A
Bridge A

 
 
 
 
 
 

Controller
Module

Fog Environment

Event Channel

Process Information 
Channel

Command 
Channel

Information Request 
Channel

Bridge B

Streaming Data

Domain Model

Vocabulary Vocabulary

Decision 
Module

IF

IF

IF

IF 2

Configuration 
Channel

P

P

P

M

M

C

P

Fog Environment Cloud Environment

User

User Action

Streaming Data

(i)

(ii)

Memory

Fog Request 
Channel

Fog Request 
Channel

Legend: Use Case Specifc

Generic

Optional

IF
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SR and MCS 4. DynaCon: Dynamic Configuration 4.2 Distributed Stream Reasoning

Distributed Stream Processing
LARS engines Ticker [Beck et al., 2017], Laser [Bazoobandi et al., 2017]:
monolithic evaluation using a clock (ticks)

performance issues under load

as in stream processing, distribute computation

Distributed LARS (Outline):

streaming atoms: a | @t′a | �@t′a | �3a | �2a

cast time-point to interval semantics (support triggers)

decompose program P using an (stream) dependency graph

a component graph over it yields a network of subprograms P1, . . . ,Pm

• each Pi is run by a stream reasoner
• publishes streaming atoms to its successors,
• requests streaming atoms from its predecessors (for itself or successors)

• a special master node interfaces the outside world (publishes all externaal
atoms, wants all internal atoms)

stream-stratification (no cycle through windows) ensures a data pipeline
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SR and MCS 4. DynaCon: Dynamic Configuration 4.2 Distributed Stream Reasoning

Component Graph

<<master>>

high :- value(V),alpha(V) at T in [3 s],(18) <= (V).
mid :- value(V),alpha(V) at T in [3 s],(12) <= (V),(V) < (18).

low :- value(V),alpha(V) at T in [3 s],(V) <= (12).
value(5).

value(15).
value(25).

[alpha(V)
,off

,rtm50]

lfu :- high always in [3 s].
lru :- mid always in [3 s].

fifo :- low always in [3 s],rtm50 in [3 s].
done :- lfu.
done :- lru.
done :- fifo.

random :- not done.
finish :- off in [1 s],done.

finish :- off in [1 s],random.

[done
,fifo

,finish
,high
,lfu
,low
,lru
,mid

,random
,value(V)]

[high
,low
,mid
,off

,rtm50
,value(V)]
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SR and MCS 4. DynaCon: Dynamic Configuration 4.2 Distributed Stream Reasoning

Distributed Stream Reasoning System

Stream Reasoning Component

Data  
stream

External  
systems Answer 

stream 

Master

Ground

Next Trigger

Stream
Reasoner

Store

TriggerTrigger / Timer

Interval 
DB

Ticker
encoding

Answer streams

Data/commands

Legend

Master: computes the component graph and spawns nodes in the network
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SR and MCS 5. Conclusion

1. Multi-Context Systems

2. MCS and Data Streams

3. MCS for Smart Cyber-Physical Systems

4. DynaCon: Dynamic Configuration

5. Conclusion
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SR and MCS 5. Conclusion

Conclusion

Summary
• MCS as versatile formalism, many extensions
• streaming data as an increasing computation setting

– cf. [Ellmauthaler, 2018] for MCS and streaming

• Cyber-Physical Systems (CPS) as application area of MCS
• DynaCon: dynamic configuration, a challenging need in CPS
• distributed stream reasoning: LARS

– BigSR, Strider [Ren, 2018]: hybrid adaptive distributed RSP engine,
compile into Apache Spark / Flink

Issues and Ongoing/Future Work
• picture the role of MCS
• refined complexity

– communication, memory, parallelization

• component interface languages
• adaptive monitoring: control language
• develop distributed LARS
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SR and MCS 6. 6.1 Window Functions

Data Snapshots: Window Functions

Important aspect of stream processing: use only window view of data, i.e., limited
observability at each point in time

Different types of windows in practice:

• time-based windows (within time bounds)

• tuple-based windows (number of tuples, count)

• partition-based windows (split input data, process separately)

• in addition, sliding or tumbling (consider atom repeatedly / once)

Model data snapshots (windows) as substreams of a stream

Formally, windows are functions

w : (S, t) 7→ S′

assigning each stream S = (T, υ) and t ∈ T a substream S′ ⊆ S, which means
S′ = (T ′, υ′) such that T ′ ⊆ T and υ′(t) ⊆ υ(t), for all t ∈ T ′
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SR and MCS 6. 6.1 Window Functions

Window Functions: Example

time-based window w1,5(1)
τ , looking back 1 and forward 5 steps (at most), with step size 1

(i.e., sliding)

36 37 38 39 40 41 42 43 44 45

•

•

•

•

` u

tra
m(

a 1,
p 1)

tra
m(

a 2,
p 2)

exp
(a 2,

p 3)

exp
(a 1,

p 3)

S′ = w(S, t)
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SR and MCS 6. 6.1 Window Functions

Window Functions: Example

time-based window w1,5(1)
τ , looking back 1 and forward 5 steps (at most), with step size 1

(i.e., sliding)

36 37 38 39 40 41 42 43 44 45

•

•

•

•

` u

tra
m(

a 1,
p 1)

tra
m(

a 2,
p 2)

exp
(a 2,

p 3)

exp
(a 1,

p 3)

S′ = w1,5,1
τ (S, 40) = ([39, 45],


40 : {tram(a2, p2)},
43 : {exp(a2, p3)},
44 : {exp(a1, p3)}

)
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SR and MCS 6. 6.2 Formulas

LARS Formulas

LARS language: extend logic language stream access / processing

Atoms from A (atomic formulas a)

Boolean connectives ∧, ∨,→, ¬
Window operators � (substream generation), . (reset to original stream)

�w ⇐⇒ w(S, t)
Examples
• �τ10 := �w10,0(1)

τ last 10 units (sliding time-based)

• �τ+5 := �w0,5(1)
τ next 5 units

• �#n = �
wn,0
# last n tuples (sliding tuple-based window)

Temporal operators 3, 2, @t

@20 tram(a2, p1) �τ+53exp(a1, p3)

Note: nesting of windows is possible!

�τ602 �τ 53tramAt(p1) �# n �τ 53tramAt(p1)
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SR and MCS 6. 6.2 Formulas

Regular Windows & Plain Bridge Rules
Regular Windows

• pathologic window functions w(S, t) may e.g. interpret t as Gödel number of a
computation; thus we hit undecidability.

• A window function w(S, t) is regular, if
(i) w(S, t)(t′), i.e., the data in the window w(S, t) at time t′, depends only on S from

t′, t′+1 etc. onwards (allows for data dropping)

(ii) for some l ≥ p ≥ 0 polynomial in |kbi(0)|, we have w(S, t) = w(S′, t + p) for every
t and streams S, S′ that coincide on the past (future) l time points around t resp.
t+p having data (informally, w is periodic and l is a limit for evaluation)

• small (polynomial-size) time-based, tuple-based windows are regular.

Plain Bridge Rules

simply memorizing the data within the limit with their actual time points is not
feasible under a space constraint wrt. |kbi(0)|
a (schematic) bridge rule is plain, if time references are to evaluation time (�0@Z>)
with fixed offset os (Z±os)

For plain bridge rules (cf. running example), full memorization can be avoided

Lemma. If bri is plain and any window occurring in it is regular, a sufficient fragment of
each input stream Ski to evaluate bri can be maintained in polynomial space.
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SR and MCS 6. 6.3 Issues with MCS for Smart CPS

MCS limitations for Smart CPS

Issues [Costantini and Gasperis, 2016], [Cabalar et al., 2017]

• Grounded (Propositional) Knowledge
⇒ expand initial grounding of open
rules gradually (fixpoint)

• Logical Omniscience and Unbounded
Resources
⇒ delay bridge rule application with
commitment

• Update Problem (by Environment)
⇒ environment update prior to mngmt
update (tMCS)

• Full System Knowledge
⇒ look up yellow pages for neighbors

• Static System
⇒ yellow pages of current contexts
(cf. dynamic configuration [Dao-Tran et al.,
2011])

• Unique Source
⇒ dynamic name binding: pick suitable
context (by role)

• Uniform Knowledge Representation Format
⇒ model / KB alignment

• Equilibria Computation and Consistency
Check
black box (privacy) vs glass box contexts
(efficiency)

Proposal: dynamic mMCS (dmCS), special contexts (e.g. yellow pages)

But: formalization amenable to analysis ?? (cf. aMCS)
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SR and MCS 6. 6.4 CNN: Framework Implementations

CNN: Framework Implementation

ndnSIM 2.0

Content Store Tracer
fills

Solving Process

Python: process.py

Solver 

DLVHEX 2.5: solver.hex

calls

External Predicates

Python: solver.py

queries

Router Server Time Number of Interests

1 1 1 15

1 2 1 0

1 3 1 37

2 1 1 0

2 2 1 23

2 3 1 7

Event 

Database

resolves 

external atoms

triggers periodically

for every router

ndnSIM: a general network simulator

solver.hex: implements a LARS fragment using the dlvhex solver (hybrid ASP)

solver.py: comprises implementation of external predicates, e.g.

• alpha/1: returns the estimated α̂ value of the Zipf distribution

Later: Ticker implementation
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