Multi-Context Reasoning in Continuous Data-Flow Environments
Modelling with reactive Multi-Context Systems

Stefan Ellmauthaler
ellmauthaler@informatik.uni-leipzig.de

Computer Science Institute
Leipzig University
Germany

STREAM REASONING WORKSHOP 2019
Linköping
April, 16th 2019

[Ellmauthaler, 2019, Ellmauthaler, 2018, Brewka et al., 2018]
Multi-Context Systems at SR-Workshops

Berlin 2016
- Inconsistency Management in reactive Multi-Context Systems
- Stream Packing in asynchronous Multi-Context Systems (given by Jörg Pührer)

Zürich 2018
- Asynchronous Multi-Context Systems

Today
- Short introduction to reactive Multi-Context Systems
- Modelling with reactive Multi-Context Systems
Logic

- An abstract way to define a Logic
- Capable of realising monotone and non-monotone logics
- Representing different number of values
 (e.g. binary, many valued, fuzzy values, ...)

Definition (Logic [Brewka and Eiter, 2007])

A logic is a triple \(L = \langle KB, BS, \text{acc} \rangle \), where

- \(KB \) is a set of knowledge bases,
- \(BS \) is a set of belief sets, and
- \(\text{acc} : KB \mapsto 2^{BS} \), the *acceptance function* is a function which assigns to each knowledge base a set of belief sets.
Represent KRR Formalisms

Description Logic \mathcal{AL}

$L_d = \langle \text{KB}_d, \text{BS}_d, \text{acc}_d \rangle$

- KB_d are all ontologies
- BS_d is the set of deductively closed subsets in \mathcal{AL}
- acc_d is a mapping of $kb \in \text{KB}_d$ to $M \subseteq 2^{\text{BS}_d}$, s.t. $\forall m \in M \; kb \models m$ holds.
Represent KRR Formalisms

Description Logic \mathcal{AL}

$L_d = \langle KB_d, BS_d, acc_d \rangle$

- KB_d are all ontologies
- BS_d is the set of deductively closed subsets in \mathcal{AL}
- acc_d is a mapping of $kb \in KB_d$ to $M \subseteq 2^{BS_d}$, s.t. \(\forall m \in M \, kb \models m \) holds.

Answer Set Programming

$L_{asp} = \langle KB_{asp}, BS_{asp}, acc_{asp} \rangle$

- Let A be the set of all possible ground atoms
- KB_{asp} is the set of all answer set programs over A.
- $BS_{asp} = 2^A$
- acc_{asp} maps each ASP program to its answer sets
Origins

from mMCS via [r/e]MCS to rMCS

reactive Multi-Context Systems

- based on managed Multi-Context Systems [Brewka et al., 2011]
- old version got presented at ECAI 2014 [Brewka et al., 2014]
- evolving Multi-Context Systems at ECAI 2014 [Gonçalves et al., 2014]

⇒ complete redefinition of rMCS

Current reactive Multi-Context Systems

- less complicated, cycle-free definitions
- a generalisation of managed Multi-Context Systems
- declarative and operative bridge rules
- results on inconsistency management
- results on complexity
- results on simulating other approaches
Syntax

- **Context**: A context is a triple $C = \langle L, OP, mng \rangle$ where $L = \langle KB, BS, acc \rangle$ is a logic, OP is a set of operations, and $mng : 2^{OP} \times KB \rightarrow KB$ is a management function.

- **Bridge Rule**: Let $C = \langle C_1, \ldots, C_n \rangle$ be a tuple of contexts and $IL = \langle IL_1, \ldots, IL_k \rangle$ a tuple of input languages. A bridge rule for C_i over C and IL, $i \in \{1, \ldots, n\}$, is of the form $op \leftarrow a_1, \ldots, a_j, \neg a_{j+1}, \ldots, \neg a_m \text{ or next } (op) \leftarrow a_1, \ldots, a_j, \neg a_{j+1}, \ldots, \neg a_m$.

- **Example**: $setTemp(hot) \leftarrow st::tmp(T), 42 < T$

Building Blocks

- **Stove Sensors**: I_{st}
- **Position Tracking**: I_{pos}
- **Medical Sensors**: I_{ms}
- **Drug Dispenser**: I_{dd}

- **Stove Storage**: C_{st}
- **Position Storage**: C_{pos}
- **Health Ontology**: C_{ho}
- **Health Monitor**: C_{hm}

- **ASP Control**: C_{ec}
Syntax

Definition (Context)
A context is a triple $C = \langle L, OP, mng \rangle$ where $L = \langle KB, BS, acc \rangle$ is a logic, OP is a set of operations, $mng: 2^{OP} \times KB \rightarrow KB$ is a management function.

Definition (Bridge Rule)
Let $C = \langle C_1, \ldots, C_n \rangle$ be a tuple of contexts and $IL = \langle IL_1, \ldots, IL_k \rangle$ a tuple of input languages. A bridge rule for C_i over C and IL, $i \in \{1, \ldots, n\}$, is of the form

$$\text{op} \leftarrow a_1, \ldots, a_j, \neg a_{j+1}, \ldots, \neg a_m \text{ or next } (\text{op}) \leftarrow a_1, \ldots, a_j, \neg a_{j+1}, \ldots, \neg a_m$$

Example
$$\text{setTemp}(\text{hot}) \leftarrow \text{st}::\text{tmp}(T), 42 < T$$
$$\text{next } (\text{setPower}(\text{off})) \leftarrow \text{ec}:\text{turnOff}(\text{stove})$$
$$\text{next } (\text{setPower}(\text{off})) \leftarrow \text{st}::\text{switch}, \text{st}:\text{pw}$$
Definition (Context)

A context is a triple $C = \langle L, OP, mng \rangle$ where

- $L = \langle KB, BS, acc \rangle$ is a logic,
- OP is a set of operations,
- $mng : 2^{OP} \times KB \rightarrow KB$ is a management function.
Definition (Context)

A context is a triple \(C = \langle L, OP, \text{mng} \rangle \) where
- \(L = \langle KB, BS, \text{acc} \rangle \) is a logic,
- \(OP \) is a set of operations,
- \(\text{mng} : 2^{OP} \times KB \rightarrow KB \) is a management function.
Definition (Context)

A context is a triple \(C = \langle L, OP, \text{mng} \rangle \) where

- \(L = \langle KB, BS, \text{acc} \rangle \) is a logic,
- \(OP \) is a set of operations,
- \(\text{mng} : 2^{OP} \times KB \to KB \) is a management function.

Definition (Bridge Rule)

Let \(C = \langle C_1, \ldots, C_n \rangle \) be a tuple of contexts and \(IL = \langle IL_1, \ldots, IL_k \rangle \) a tuple of input languages. A bridge rule for \(C_i \) over \(C \) and \(IL \), \(i \in \{1, \ldots, n\} \), is of the form

\[
\text{next}(op) \leftarrow a_1, \ldots, a_j, \text{not } a_{j+1}, \ldots, \text{not } a_m
\]

or

\[
op \leftarrow a_1, \ldots, a_j, \text{not } a_{j+1}, \ldots, \text{not } a_m
\]
Syntax

Definition (Context)

A context is a triple \(C = \langle L, \text{OP}, \text{mng} \rangle \) where \(L = \langle \text{KB}, \text{BS}, \text{acc} \rangle \) is a logic, \(\text{OP} \) is a set of operations, \(\text{mng}: 2^{\text{OP}} \times \text{KB} \rightarrow \text{KB} \) is a management function.

Example

- \(\text{setTemp}(\text{hot}) \leftarrow \text{st::tmp}(T), 42 < T \)
- \(\text{next(setPower(}\text{off}) \leftarrow \text{ec:turnOff(stove)} \)
- \(\text{next(setPower(}\text{off}) \leftarrow \text{st::switch, st:pw} \)

Definition (Bridge Rule)

Let \(C = \langle C_1, \ldots, C_n \rangle \) be a tuple of contexts and \(IL = \langle IL_1, \ldots, IL_k \rangle \) a tuple of input languages. A bridge rule for \(C_i \) over \(C \) and \(IL, i \in \{1, \ldots, n\} \), is of the form

\[
\text{op} \leftarrow a_1, \ldots, a_j, \textbf{not } a_{j+1}, \ldots, \textbf{not } a_m \text{ or } \\
\text{next(op)} \leftarrow a_1, \ldots, a_j, \textbf{not } a_{j+1}, \ldots, \textbf{not } a_m
\]
Definition (Reactive Multi-Context System)

A reactive Multi-Context System is a tuple $M = \langle C, IL, BR \rangle$, where

- $C = \langle C_1, \ldots, C_n \rangle$ is a tuple of contexts;
- $IL = \langle IL_1, \ldots, IL_k \rangle$ is a tuple of input languages;
- $BR = \langle BR_1, \ldots, BR_n \rangle$ is a tuple such that each $BR_i, i \in \{1, \ldots, n\}$, is a set of bridge rules for C_i over C and IL.
Semantics

Definition (Configuration of Knowledge Bases)

Let $M = \langle C, IL, BR \rangle$ be an rMCS, such that $C = \langle C_1, \ldots, C_n \rangle$. A configuration of knowledge bases for M is a tuple $KB = \langle kb_1, \ldots, kb_n \rangle$, such that $kb_i \in KB_i$, for each $i \in \{1, \ldots, n\}$. We use Con_M to denote the set of all configurations of knowledge bases for M.

Definition (Belief State)

Let $M = \langle \langle C_1, \ldots, C_n \rangle, IL, BR \rangle$ be an rMCS. Then, a belief state for M is a tuple $B = \langle B_1, \ldots, B_n \rangle$ such that $B_i \in BS_i$, for each $i \in \{1, \ldots, n\}$. We use Bel_M to denote the set of all belief states for M.

Definition (Input)

Let $M = \langle C, \langle IL_1, \ldots, IL_k \rangle, BR \rangle$ be an rMCS. Then an input for M is a tuple $I = \langle I_1, \ldots, I_k \rangle$ such that $I_i \subseteq IL_i$, $i \in \{1, \ldots, k\}$. The set of all inputs for M is denoted by Inp_M.

S. Ellmauthaler
Semantics

- Only utilise **Declarative Bridge Rules**
- A **belief state** is an **Equilibrium** if
 - the **updated knowledge base**
 (i.e. the management function result on the belief state, the input, and the current configuration)
 - has as the belief state one of the accepted belief states
 (i.e. it is part of the deductive closure of the semantics)
Semantics

- Only utilise **Declarative Bridge Rules**
- A belief state is an **Equilibrium** if
 - the updated knowledge base
 (i.e. the management function result on the belief state, the input, and
 the current configuration)
 - has as the belief state one of the accepted belief states
 (i.e. it is part of the deductive closure of the semantics)

Definition (Equilibrium)

Let $M = \langle \langle C_1, \ldots, C_n \rangle, IL, BR \rangle$ be an rMCS, $KB = \langle kb_1, \ldots, kb_n \rangle$ a configuration of knowledge bases for M, and I an input for M. Then, a belief state $B = \langle B_1, \ldots, B_n \rangle$ for M is an **equilibrium** of M given KB and I if, for each $i \in \{1, \ldots, n\}$, we have that

$$B_i \in \text{acc}_i(kb'), \text{ where } kb' = \text{mng}_i(\text{app}^{\text{now}}_i(I, B), kb_i).$$
Semantics

- Extend the concept of the Input, to be an **Input Stream**
- **Operative Bridge Rules** allow **configuration changes**
- **Updates** are based on the previously computed **Equilibrium**
- **Results** represented as **Equilibria Stream** and its dual **Configuration Stream**
Semantics

Definition (Update Function)

Let $M = \langle C, IL, BR \rangle$ be an rMCS such that $C = \langle C_1, \ldots, C_n \rangle$, $KB = \langle kb_1, \ldots, kb_n \rangle$ a configuration of knowledge bases for M, I an input for M, and B a belief state for M. Then, $\text{upd}_M(KB, I, B) = \langle kb'_1, \ldots, kb'_n \rangle$ is the update function for M, such that for each $i \in \{1 \ldots, n\}$, $kb'_i = \text{mng}_i(\text{app}^\text{next}_i(I, B), kb_i)$ holds.

Definition (Input Stream)

Let $M = \langle C, IL, BR \rangle$ be an rMCS such that $IL = \langle IL_1, \ldots, IL_k \rangle$. An input stream for M (until τ) is a function $\mathcal{I} : [1..\tau] \rightarrow \text{Inp}_M$ where $\tau \in \mathbb{N} \cup \{\infty\}$.
Definition (Equilibria Stream)

Let $M = \langle C, IL, BR \rangle$ be an rMCS, KB a configuration of knowledge bases for M, and I an input stream for M until τ where $\tau \in \mathbb{N} \cup \{\infty\}$. Then, an equilibria stream of M given KB and I is a function $B : [1..\tau] \rightarrow \text{Bel}_M$ such that

- B^t is an equilibrium of M given KB^t and I^t, where KB^t is inductively defined as
 - $KB^1 = KB$
 - $KB^{t+1} = \text{upd}_M(KB^t, I^t, B^t)$.

In a dual manner, we will refer to the function $KB : [1..\tau] \rightarrow \text{Con}_M$ as the configurations stream of M given $KB, I, and B$.
Modelling Aspects

Simple Tasks

- Flipping data (self-dependent)
- Handling time
- Windows
- Forgetting
Declarative and Operational Bridge Rules

Example

Flip the power for the stove if a switch is pressed.
Declarative and Operational Bridge Rules

Example
Flip the power for the stove if a switch is pressed.

Declarative approach

- setPower\text{(}off\text{)} \leftarrow st::switch, st:pw
- setPower\text{(}on\text{)} \leftarrow st::switch, \textbf{not } st:pw
Declarative and Operational Bridge Rules

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

- `setPower(off) ← st::switch, st:pw`
- `setPower(on) ← st::switch, not st:pw`
- No Equilibrium can be found
Declarative and Operational Bridge Rules

Example
Flip the power for the stove if a switch is pressed.

Declarative approach

- setPower(off) ← st::switch, st::pw
- setPower(on) ← st::switch, not st::pw
- No Equilibrium can be found

Operational approach

- next(setPower(off)) ← st::switch, st::pw
- next(setPower(on)) ← st::switch, not st::pw
Declarative and Operational Bridge Rules

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

- \text{setPower} (\text{off}) \leftarrow \text{st::switch}, \text{st:pw}
- \text{setPower} (\text{on}) \leftarrow \text{st::switch}, \text{not st:pw}
- No Equilibrium can be found

Operational approach - without sensor data

- \text{add} (\text{switchpower}) \leftarrow \text{st::switch}
- \text{next} (\text{setPower} (\text{off})) \leftarrow \text{st:switchpower}, \text{st:pw}
- \text{next} (\text{setPower} (\text{on})) \leftarrow \text{st:switchpower}, \text{not st:pw}
Handling Time

Possible ways
- Sensor
- Time-Context

Time Context

\[
\begin{align*}
\text{setTime}(\text{now}(0)) & \leftarrow \textbf{not} \text{ clock:timeAvailable} \\
\text{next}(\text{add}(\text{timeAvailable})) & \leftarrow \text{clock:now}(0) \\
\text{next}(\text{setTime}(\text{now}(T + 1))) & \leftarrow \text{clock:now}(T)
\end{align*}
\]
Forgetting and Windowing

Volatile Information and Reasoning with a Window

\[
\text{next}(\text{add}(\text{alert}(\text{stove}, T))) \leftarrow c::\text{now}(T), ec:\text{alert}(\text{stove}).
\]
\[
\text{next}(\text{del}(\text{alert}(\text{stove}, T))) \leftarrow stE:\text{alert}(\text{stove}, T), \textbf{not} ec:\text{alert}(\text{stove}).
\]
\[
\text{add}(\text{emergency}(\text{stove})) \leftarrow c::\text{now}(T), ec:\text{alert}(\text{stove}),
\quad stE:\text{alert}(\text{stove}, T'),
\quad stE:\text{winE}(Y), |T - T'| \geq Y.
\]

Dynamic Window

\[
\text{next}(\text{set}(\text{win}(P, X))) \leftarrow ed:\text{defWin}(P, X), \textbf{not} ed:\text{ susp}(E).
\]
\[
\text{next}(\text{set}(\text{win}(P, Y))) \leftarrow ed:\text{rel}(P, E, Y), ed:\text{ susp}(E).
\]
\[
\text{alarm}(E) \leftarrow ed:\text{conf}(E).
\]
\[
\text{next}(\text{add}(P(T))) \leftarrow c::\text{now}(T), s::P.
\]
\[
\text{next}(\text{del}(P(T'))) \leftarrow ed:P(T'), c::\text{now}(T), ed:\text{win}(P, Z), T' < T - Z.
\]
Thank you for your interest
Equilibria in heterogeneous nonmonotonic multi-context systems.

Managed multi-context systems.
In Walsh, T., editor, Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pages 786–791. IJCAI/AAAI.

Reactive multi-context systems: Heterogeneous reasoning in dynamic environments.
Artificial Intelligence, 256:68–104.

