Ontology-Based Query Answering for Probabilistic Temporal Data

Stream Reasoning Workshop, Linköping, 2019-04-17
Ontology-Based Query Answering

- Data coming from various sources
- Ontology defines background knowledge
- Queries answered wrt. augmented view
<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data (ABox)</td>
</tr>
<tr>
<td>Male(peter) hasChild(peter, tom) worksAt(peter, TUDresden)</td>
</tr>
<tr>
<td>Ontology (TBox)</td>
</tr>
<tr>
<td>Father \equiv Male \sqcap \existschild. \top</td>
</tr>
<tr>
<td>Conjunctive Query (CQ)</td>
</tr>
<tr>
<td>$q(x) \leftarrow \exists y.\text{worksAt}(y, x) \wedge \text{Father}(y)$</td>
</tr>
</tbody>
</table>
Motivating Scenario

Application:
Ontology-based hypertension management in smartphone app
Motivating Scenario

Application:
Ontology-based hypertension management in smartphone app

- Sensor measures blood-pressure of patient
- Motion sensors indicate user activity
 - Walking
 - Cycling
 - Sitting
- Context + medical information
- Medical ontology as background knowledge
Motivating Scenario

Properties of Scenario

- History of observations relevant
 - Development of blood pressure
 - Recent activity

- A lot of observations *probabilistic* in nature
 - Uncertain measurements of sensor
 - Information inferred from motion sensor

⇒ Requires to handle data that are *temporal*
⇒ Requires to handle data that are *probabilistic*
Temporal Probabilistic OBQA

Sequence of Probabilistic Data

Augmented View on Data
Temporal Knowledge Bases

- Ontology + Sequence of datasets (ABoxes)
- Signature divided in two parts:
 - **Rigid** names
 - Interpretation independent of time
 - e.g. gender, has-parent relation,
 - **Non-rigid** names
 - Interpretation may change over time
 - e.g. blood pressure level, user activity
Example

Sequence of ABoxes

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>bP(p, b)</code></td>
<td></td>
<td><code>High(b)</code></td>
<td></td>
<td><code>High(b)</code></td>
<td></td>
</tr>
</tbody>
</table>

TBox

```
HighBloodPressurePatient ≡ ∃bloodPressure.High
```

Rigid Names

- `bloodPressure (bP)`

⇒ `HighBloodPressurePatient(p) at 2 and 4`
Temporal Queries

- Well-investigated query language for temporal KBs
- Combine CQs with *Linear Temporal Logic* (LTL)

Temporal queries (TQs)

<table>
<thead>
<tr>
<th>(\exists \vec{x}. Q(\vec{x}, \vec{y}))</th>
<th>(\neg q)</th>
<th>(q_1 \land q_2)</th>
<th>(q_1 \lor q_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Box q)</td>
<td>(\Box \neg q)</td>
<td>(\Diamond q)</td>
<td>(\Diamond \neg q)</td>
</tr>
<tr>
<td>(\square q)</td>
<td>(\square \neg q)</td>
<td>(q_1 \mathcal{U} q_2)</td>
<td>(q_1 \mathcal{S} q_2)</td>
</tr>
</tbody>
</table>
Example Temporal Queries

Twice HighBloodPressurePatient within last 5 time units:

\[q(x) \leftarrow \bigcirc^{-5} (\text{HBPP}(x) \land \bigtriangleup \text{HBPP}(x)) \]
Probabilistic OBQA

- Probabilistic ABoxes: Based on Probabilistic Databases
- Simplest approach: Assign probabilities to ABox axioms

| Exercise (patient): 0.6 | High Blood Pressure (patient): 0.8 |

- Define probability measure over possible worlds
- Assume statistical independence
 - More advanced models assign formulae over statistical variables
 ⇒ Complexities presented here still apply
Temporal Probabilistic KBs

Temporal Probabilistic ABox:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$BP(p, b)$</td>
<td>1</td>
<td>High(b): 0.7</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Temporal Probabilistic KBs

Temporal Probabilistic ABox:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BP(p, b)</td>
<td>High(b): 0.7</td>
<td></td>
<td>High(b): 0.9</td>
<td></td>
<td>High(b): 0.6</td>
</tr>
</tbody>
</table>

Possible worlds:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BP(p, b)</td>
<td>High(b)</td>
<td>High(b)</td>
<td>High(b)</td>
<td>High(b)</td>
<td>0.378</td>
</tr>
<tr>
<td>BP(p, b)</td>
<td>High(b)</td>
<td>High(b)</td>
<td></td>
<td></td>
<td>0.162</td>
</tr>
<tr>
<td>BP(p, b)</td>
<td>High(b)</td>
<td></td>
<td>High(b)</td>
<td></td>
<td>0.042</td>
</tr>
<tr>
<td>BP(p, b)</td>
<td>High(b)</td>
<td></td>
<td></td>
<td></td>
<td>0.018</td>
</tr>
<tr>
<td>BP(p, b)</td>
<td></td>
<td>High(b)</td>
<td>High(b)</td>
<td></td>
<td>0.252</td>
</tr>
<tr>
<td>BP(p, b)</td>
<td></td>
<td>High(b)</td>
<td></td>
<td></td>
<td>0.108</td>
</tr>
<tr>
<td>BP(p, b)</td>
<td></td>
<td></td>
<td>High(b)</td>
<td></td>
<td>0.028</td>
</tr>
<tr>
<td>BP(p, b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.012</td>
</tr>
</tbody>
</table>
Temporal Probabilistic Queries

Temporal Probabilistic Query Language

Conjunctive Queries + LTL operators + prob. operators

\[P_{>p} Q \quad P_{=}p Q \quad P_{<p} Q \]

Example

\[q(x) \leftarrow \bigcirc^{-10} \left(P_{<0.2}(\text{Exercising}(x)) \cup P_{>0.8}(\text{HighBPP}(x)) \right) \]

- During the **last 10 time units**,
- patient was with **low probability** exercising
- until with **high probability** he had high blood pressure
Complexities

- Classical
 - \text{ALCOIQ} → \text{ALCOIQ}
 - \text{ALCOIQ} → \text{ALCOIQ}

- No Rigid Roles
 - \text{ALCOIQ} → \text{ALCOIQ}
 - \text{ALCOIQ} → \text{ALCOIQ}

- Rigid Roles
 - \text{ALCOIQ} → \text{ALCOIQ}
 - \text{ALCOIQ} → \text{ALCOIQ}

- decidable
 - \text{ALCOIQ} → \text{SHIQ}
 - \text{SHIQ} → \text{ALCO}
 - \text{ALCO} → \text{ALCI}

- 2ExpTime
 - \text{ALC} → \text{SHQ}

- ExpTime
 - \text{EL}
 - \text{EL(data)}

- ExSpace
 - \text{EL(pos)}
 - \text{EL(pos,data)}

- P
 - \text{PL(pos)}

- NP
 - \text{PL(data)}

- PP
 - \text{PL(pos)}

- PP^NP - P^P
 - \text{PL(pos, data)}

- \text{EL(pos, data)}

- \text{EL(pos)}

- \text{EL(data)}

- \text{EL(pos)}

- \text{EL(pos, data)}

- \text{EL(pos, data)}
Complexities

- Classical
 - $\text{ALCHOTIQ} : \text{ALCOIQ}$
 - $\text{ALCOI} \ldots SHOI$
 - $\text{SHOQ} : \text{ALCO}$
 - $\text{SHIQ} : \text{ALCI}$
 - $\text{ALC} \ldots SHQ$
 - $\mathcal{E}L$
 - $\mathcal{E}L$(data)

- No Rigid Roles
 - $\text{ALCHOTIQ} : \text{ALCOIQ}$
 - $\text{ALCOI} \ldots SHOI$
 - $\text{SHOQ} : \text{ALCO}$
 - $\text{SHIQ} : \text{ALCI}$
 - $\text{ALC} \ldots SHQ$
 - $\mathcal{E}L$(pos)
 - $\mathcal{E}L$(pos, data)

- Rigid Roles
 - $\text{ALCHOTIQ} : \text{ALCOIQ}$
 - $\text{ALCOI} \ldots SHOI$
 - $\text{SHOQ} : \text{ALCO}$
 - $\text{SHIQ} : \text{ALCI}$
 - $\text{ALC} \ldots SHQ$
 - $\emptyset \ldots \mathcal{E}LH$
 - $\mathcal{E}L$(pos)
 - $\mathcal{E}L$(pos, data)

Complexities:

- Decidable
- 2ExpTime
- ExpTime
- ExpSpace
- NP
- P
- $\text{P}^{\text{NP}} - \text{P}^{\text{NP}}$
- \mathcal{P}^{P}
Complexities

classical

No Rigid Roles

Rigid Roles

\(\text{ALCHOIQ} \)

\(\text{ALCOIQ} \)

decidable

\(\text{ALCOIQ} \)

\(\text{ALCOIQ} \)

\(\text{ALCOIQ} \)

2\(\text{ExpTime} \)

\(\text{ExpTime} \)

\(\text{ExpSpace} \)

NP

P

\(\text{EL} \)

\(\text{EL} \)

\(\text{EL(pos)} \)

\(\text{EL(pos)} \)

\(\text{EL(data)} \)

\(\text{EL(pos, data)} \)

PP

PP

\(\text{P} \)

\(\text{P} \)

\(\text{P} \)

\(\text{P} \)
Complexities Probabilistic Temporal OBQA

- **Classical**
 - Decidable
 - 2ExpTime
 - ExpTime
 - NP
 - P

- **No Rigid Roles**
 - Decidable
 - ExpSpace
 - $\mathbb{P}^\mathbb{NP}$, $\mathbb{P}^\mathbb{PP}$
 - \mathbb{P}

- **Rigid Roles**
 - Decidable
 - ExpSpace
 - $\mathbb{P}^\mathbb{NP}$, $\mathbb{P}^\mathbb{PP}$
 - \mathbb{P}

Ontology-Based Query Answering for Probabilistic Temporal Data
© Patrick Koopmann
Stream Reasoning Workshop, Linköping, 2019-04-17
Main results

- Framework combining temporal and probabilistic OBQA
- \(\text{EXPSPACE} \)-hard, already without ontology
- Source of complexity: negation
 - Without, not much harder as probabilistic data access (PP/PP\(^{NP} \))

Current Research

- Prototypical implementation
 - positive queries, \textit{DL-Lite}
- Extend also ontology language
 - prob.+temp. concept+axiom operators
 - prob. + temp. on concepts makes 2-\text{EXPSPACE}-hard