Approximate Stream Reasoning with Incomplete State Information Fourth Stream Reasoning Workshop, Linköping, Sweden

Daniel de Leng

Artificial Intelligence and Integrated Computer Systems Department of Computer and Information Science Linköping University, Sweden

I.U LINKÖPING UNIVERSITY

Stream Reasoning with Incomplete Information Progression Graph-Based Progression Summary

Introduction

Metric Temporal Logic Progression-based Runtime Verification

2 Stream Reasoning with Incomplete Information

3 Progression Graph-Based Progression

Stream Reasoning with Incomplete Information Progression Graph-Based Progression Summary

Introduction

Metric Temporal Logic Progression-based Runtime Verification

Consider runtime verification for checking whether an agent is behaving in a safe manner.

Example (Safety)

"A robot in an unsafe state should return to a safe state within 10 seconds"

Motivation: Incomplete information!

Stream Reasoning with Incomplete Information Progression Graph-Based Progression Summary Metric Temporal Logic Progression-based Runtime Verification

Metric Temporal Logic

We use Metric Temporal Logic (MTL) as a language for describing temporal rules that must hold.

Definition (MTL syntax)

The syntax for MTL is as follows for atomic propositions $p \in \text{Prop}$, temporal interval $I \subseteq (0, \infty)$, and well-formed formulas (wffs) ϕ and ψ :

$$p \mid \neg \phi \mid \phi \lor \psi \mid \phi \ \mathcal{U}_{I} \ \psi$$

where \Box_I and \Diamond_I are syntactic sugar for 'always' and 'eventually'.

Stream Reasoning with Incomplete Information Progression Graph-Based Progression Summary Metric Temporal Logic Progression-based Runtime Verification

Progression-based Runtime Verification

Progression is an incremental **syntactic rewriting procedure** introduced by Bacchus and Kabanza (1996, 1998):

 $\mathsf{MTL}\ \mathsf{Formula} + \mathsf{Complete}\ \mathsf{State} + \mathsf{Delay} \Rightarrow \mathsf{MTL}\ \mathsf{Formula}$

$$\frac{\phi_{0} = \Box(\neg p \to \Diamond_{[0,10]} p), s = \{\neg p\}, \Delta = 2}{\phi_{1} = \Diamond_{[0,8]} p \land \Box(\neg p \to \Diamond_{[0,10]} p)}$$

Incomplete States and Streams Progression Graphs

Stream Reasoning with Incomplete Information

Problem: How to perform progression with incomplete states?

General idea: Apply model counting

Incomplete States and Streams Progression Graphs

Incomplete States and Streams

Important assumptions:

- We keep a constant delay value (Δ) and omit it from here on;
- An incomplete state \hat{s} is a disjunctive set of complete states;
- A (piecewise) incomplete stream ρ̂ is a sequence of incomplete states;
- We assume we have a probabilistic model of a stream denoted by a state universe **S**_n for every time-point *n*.

Incomplete States and Streams Progression Graphs

Progression Graphs

A progression graph encodes formulas and their progressions into a graph $G(\chi) = (\chi, V, E)$ such that

- vertices represent formulas;
- $\chi \in V$ represents the graph source formula; and
- labelled edges $(\phi, \psi, s) \in E$ iff PROGRESS $(\phi, s) = \psi$.

Incomplete States and Streams Progression Graphs

Progression Graphs

Progression graphs $G_n(\chi) = (\chi, V, E, m_n)$ carry probability mass:

$$m_0(\chi) = 1.0 \text{ (Initialization)}$$
$$m_n(v) = \sum_{(v',v,s)\in E} (m_{n-1}(v') \operatorname{Pr}[\mathbf{S}_n = s \mid \widehat{s}_n])$$

Theorem (Soundness)

Given a progression graph $G_n(\chi)$ and a stream $\hat{\rho}$:

$$\lim_{n\to\infty} m_n(\top) = \Pr\left[\widehat{\rho}, t_0 \models \chi\right],$$
$$\lim_{n\to\infty} m_n(\bot) = \Pr\left[\widehat{\rho}, t_0 \not\models \chi\right].$$

Complete Information Incomplete Information Approximate Progression

Progression Graph-Based Progression

Example (Ship Stabilisation)

Suppose we have an autonomous ship with a landing deck. The ship attempts to stabilise itself according to the rule:

$\Box(\neg p \to (\Diamond_{[0,5]} \Box_{[0,3]} p))$

"Whenever the ship is unstable $(\neg p)$, the ship will be stable (p) for a consecutive period of 3 minutes, within 5 minutes from having become unstable."

 $\square \; ((\text{not } \mathbf{P}) \Rightarrow (\diamondsuit[0,5] \; \square[0,3] \; \mathbf{P}))$

Introduction Stream Reasoning with Incomplete Information Progression Graph-Based Progression Summary

Complete Information Incomplete Information Approximate Progression

Incomplete Information

Example (Ship Stabilisation (Cont'd))

Suppose we are no longer able to measure unambiguously whether the ship is stable. Continue progression, and assume 90% stable, 10% unstable.

Complete Information Incomplete Information Approximate Progression

Example: Ship Stabilisation

Example (Ship Stabilisation (Cont'd))

After 10 minutes, despite incomplete sensor readings, we know:

$$\Pr[\widehat{\rho}, t_0 \not\models \Box(\neg p \to (\Diamond_{[0,5]} \Box_{[0,3]} p))] \ge 0.212680,$$

right now based on $m_{10}(\perp)$, regardless of future readings.

Complete Information Incomplete Information Approximate Progression

Approximate Progression

Approximate progression allows us to trade precision for speed and vice-versa:

- Institute a MAX_AGE for formulas;
- ② Limit the size of the graph by setting a MAX_NODES bound.

We may drop nodes with probability mass, thereby **leaking** some probability mass over time.

Complete Information Incomplete Information Approximate Progression

Methods to reduce the graph size: MAX_AGE and MAX_NODES.

Complete Information Incomplete Information Approximate Progression

Performance penalty: $MAX_AGE = 3$

Complete Information Incomplete Information Approximate Progression

Precision penalty: $MAX_NODES = 5$

Summary:

- Classical progression assumes complete states;
- We extended progression to handle incomplete states;
- O Progression graphs allow us to implicitly keep track of traces;
- Approximation offers a trade-off between precision and speed.

Many interesting extensions possible!