Probabilistic Signal Temporal Logic for Predictive Stream Reasoning

Mattias Tiger Fredrik Heintz

Artificial Intelligence and Integrated Computer Systems Department of Computer and Information Science Linköping University, Sweden

I.U LINKÖPING UNIVERSITY

Stream Reasoning Predictive Stream Reasoning Predictions and Stream Source

Unmanned Aerial Vehicle (UAV)

Ξ

Stream Reasoning Predictive Stream Reasoning Predictions and Stream Source

Stream Reasoning

E

Stream Reasoning Predictive Stream Reasoning Predictions and Stream Source

Stream Reasoning

Stream Reasoning Predictive Stream Reasoning Predictions and Stream Source

Stream Reasoning

Ξ

イロト イボト イラト イラト

Stream Reasoning Predictive Stream Reasoning Predictions and Stream Source

Reason over predictions of the future

Stream Reasoning Predictive Stream Reasoning Predictions and Stream Source

Reason over predictions of the future

イロト イポト イヨト

Stream Reasoning Predictive Stream Reasoning Predictions and Stream Source

Reason over predictions of the future

React when/after it happens:

 \Box (altitude > 3)

React before it happens:

 \Box (altitude_{2|0} > 3)

Collision?

Stream Reasoning Predictive Stream Reasoning Predictions and Stream Source

Predicting the future?

Predicting future states

- What is the source of the stream and its states?
- How are states related over time?

Streams and Signals STL

Streams and Signals

Ξ

Definition (STL model)

STL is defined over model $\mathcal{M} = \langle S, F_{\mathbb{B}} \rangle$. $f_p \in F_{\mathbb{B}} : \mathbb{R}^{|S|} \to \{\top, \bot\}$.

Definition (STL syntax)

$$\phi := \top \mid \mathbf{p} \mid \neg \phi \mid \phi \lor \psi \mid \phi \ \mathcal{U}_{\mathbf{I}} \ \psi$$

Definition (STL semantics)

$$\begin{split} \mathcal{M}, n &\models \top \\ \mathcal{M}, n &\models p & \text{iff } f_p(S_n) \\ \mathcal{M}, n &\models \neg \phi & \text{iff } \mathcal{M}, n \not\models \phi \\ \mathcal{M}, n &\models \phi \lor \psi & \text{iff } \mathcal{M}, n \models \phi \text{ or } \mathcal{M}, n \models \psi \\ \mathcal{M}, n &\models \phi \: \mathcal{U}_I \: \psi & \text{iff } \exists n' \in n + I \left(\mathcal{M}, n' \models \psi \text{ and} \\ \forall n'' \in [n, n') \ \left(\mathcal{M}, n'' \models \phi \right) \right) \end{split}$$

2 X X 2

Stochastic Signals and States ProbSTL Expressivity

The future is uncertain!

Sensors are imperfect!

Many sources of uncertainty exists...

Representing and managing uncertainty is important

Stochastic Signals and States ProbSTL Expressivity

Physical Systems and State Estimation

< 同 ト < 三

Stochastic Signals and States ProbSTL Expressivity

UAV inside no-fly-zone?

Ξ

Stochastic Signals and States **ProbSTL** Expressivity

Definition (ProbSTL model)

ProbSTL is defined over model $\mathcal{M} = \langle S, F_{\mathbb{B}}, F_{\mathbb{R}}, F_{\mathbb{S}}, \mathbb{E}, \mathbb{S} \rangle$

Definition (ProbSTL Stream)

A ProbSTL stream S is a tuple of discrete-time signals. The individual signals x are either deterministic $x_n = x_{t_n}$ or stochastic $x_n = \langle \mathbf{x}_{t'|t_n}, \dots \rangle$, $\forall t' \in \mathbb{R}$. Each stochastic variable is defined by its probability distribution $p(\mathbf{x}_{t'|t_n}) = p(\mathbf{x}_{t'}|y_{t_0}, \dots, y_{t_n})$.

Definition (Probabilistic Language \mathcal{L}_{prob})

$$\ell := \text{const} \mid \Pr(E(\tau_p, \dots, \tau, \dots)) \mid f_{\mathbb{R}}(\tau, \dots)$$

$$\tau := \tau_d \mid \tau_p$$

$$\tau_d := \ell \mid \mathbf{x}_t$$

$$\tau_p := \mathbf{x}_{t'|t} \mid f_{\mathbb{S}}(\tau, \dots)$$

Stochastic Signals and States ProbSTL Expressivity

UAV altitude under uncertainty

イロト イボト イヨ

Stochastic Signals and States ProbSTL Expressivity

< □ > < □ >

Expressivity

Probabilitic

• Is the UAV inside the no-fly-zone?

Introspective

• Are the predictions reliable?

Anticipatory

• Collision in the near future?

