Ontology-Based Event Processing

Stream Reasoning Workshop - 17.04.2019
Linköping, Sweden, Europe, Earth......42

R. Tommasini, Pieter Bonte, Emanuele Della Valle,
Femke Ongenae, Filip De Turck
Can you detect fire?

*Expected Answer: YES
Can you (actually) detect fire?

Expected Reaction: Perplexed Audience
Summary

Workarounds

Smoke Detection

Humidity Variations (decreases)

Temperature Variations (increases)
Ontology-Based Event Processing
An RDF Stream is an partially ordered sequence of pairs \((G_i, t_i)\) where

- \(G_i\) is a [named] RDF graph and
- \(t_i\) is a timestamp.
- an RDF Stream is **Well-Grounded** when it does **not** contain **terminological** triples, e.g.,

\[
<:c \text{ rdf:type rdfs:Class}>, \\
<:p \text{ rdf:type rdfs:Property}> \text{ etc..}
\]
An Example

({ :s1 :observes :o1 ; :o1 :value 20C }, 1)
({ :s1 :observes :o2 ; :o2 :value 20C }, 2)
({ :s1 :observes :o3 ; :o3 :value 30C }, 3)
({ :s1 :observes :o4 ; :o4 :value 50C }, 4)
An **Ontology Stream** is an *partially* ordered sequence of pairs \((A_i, t_i)\) where

- \(A_i\), is a set of a **ABox** axioms w.r.t. a static **TBox** \(T\).
- \(t_i\) is a timestamp.
An Ontology Stream S is an Event Streams when
- the static TBox E contains some axioms of the form $E \sqsubseteq B$ where B is a basic concept,
- E_i denotes an event type
- for some $(A_i, t_i) \exists E_i \in E$,
A Language Proposal
Logical Events

\[
\text{EVENT OfficeTemperatureEvent AS TemperatureEvent \ and \ (hasLocation some Office)}
\]
Logical Events

EVENT OfficeTemperatureEvent AS
TemperatureEvent and (hasLocation some Office)

DL Specifications
Composite Events

Composite Event

EVENT FireEvent

MATCH TemperatureEvent

SEQ SmokeEvent WITHIN (5m)
Composite Events

Logical Event

```
EVENT  FireEvent
MATCH  TemperatureEvent
SEQ    SmokeEvent WITHIN (5m)
```
Composite Events

EVENT FireEvent
MATCH TemperatureEvent
SEQ SmokeEvent **WITHIN** (5m)
Composite Events

\[
\begin{align*}
\text{EVENT} & \text{ FireEvent} \\
\text{MATCH} & \text{ TemperatureEvent} \\
\text{SEQ} & \text{ SmokeEvent WITHIN (5m)}
\end{align*}
\]
Composite Events (Filters)

EVENT FireEvent MATCH TemperatureEvent SEQ SmokeEvent
WITHIN (5m)
IF { EVENT TemperatureEvent {?loc0 hasValue ?v} }
Composite Events (Filters)

EVENT FireEvent MATCH TemperatureEvent EVENT SEQ SmokeEvent
WITHIN (5m)
IF {
EVENT TemperatureEvent {?loc0 hasValue ?v}
EVENT SmokeEvent {?loc1 hasValue ?v}
FILTER (?smokeLevel == 3)
}
Composite Events (Filters)

EVENT FireEvent MATCH TemperatureEvent SEQ SmokeEvent WITHIN (5m)

IF {
 EVENT TemperatureEvent {?loc0 hasValue ?v}
 EVENT SmokeEvent {?loc1 hasValue ?v }
 FILTER (?smokeLevel == 3) }

Filters
Processing Model
Processing Model

Ingestion

Icon by GraphicsBay

normalization by shashank singh from the Noun Project
Data Integrations

We assume Well-Grounded RDF Stream as common data model
Processing Model

Ingestion

Abstraction

Explanation
Events!

first-class objects in the language
Processing Model

Ingestion
Abstraction
Explanation
Normalisation
Filtering

Icon by GraphicsBay
normalization by shashank singh from the Noun Project
Property Normalisation

To enable **filtering** and **joining**
Processing Model

Ingestion

Abstraction

Normalisation

Correlation

Composition

Explanation

Filtering

Temporal

Icon by GraphicsBay

normalization by shashank singh from the Noun Project
Event Detection & Composition

To enable temporal correlation and reactions
Can we make sense in real-time of heterogeneous, vast, incomplete, and noisy and data streams coming from complex domains?
Cascading Reasoning Revised

SRW 2019 - Riccardo Tommasini - @rictomm - rictomm.me - rictomm@gmail.com
Ontology-Based Event Processing

- Abstracting *events* from RDF Streams* by means of DL reasoning
- Computing *temporal relation* across high-level event abstractions using Complex Event Processing
Cascading Reasoning Revised

Rewriting and Interpreting

- including continuous semantics will enable continuous querying over virtual streaming sources;

- including time operators like windows will enable query rewriting into continuous query languages
RDF STREAM PROCESSING COMMUNITY GROUP

The mission of the RDF Stream Processing Community Group (RSP) is to define a common model for producing, transmitting and continuously querying RDF Streams. This includes extensions to both RDF and SPARQL for representing streaming data, as well as their semantics. Moreover this work envisions an ecosystem of streaming and static RDF data sources whose data can be combined through standard models, languages and protocols. Complementary to related work in the area of databases, this Community Group looks at the dynamic properties of graph-based data, i.e., graphs that are produced over time and which may change their shape and data over time.

Note: Community Groups are proposed and run by the community. Although W3C hosts these conversations, the groups do not necessarily represent the views of the W3C Membership or staff.

drafts / licensing info
Questions?

Email: riccardo.tommasini@polimi.it
Twitter: @rictomm
Github: riccardotommasini
Web1: riccardotommasini.com
Web2: streamreasoning.org