Incremental Event Calculus for Run-Time Reasoning

Efthimis Tsilionis, Alexander Artikis, Georgios Paliouras

NCSR Demokritos
http://cer.iit.demokritos.gr/
16 April 2019

Motivation for Incremental CER

Motivation for Incremental CER

- Delayed events (e.g., satelite GPS messages)

Motivation for Incremental CER

- Delayed events (e.g., satelite GPS messages)
- Overlapping temporal windows

Motivation for Incremental CER

- Propagation of changes

Event Calculus

- A logic programming language for representing and reasoning about events and their effects.

Event Calculus

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
- event (typically instantaneous).
- fluent: a property that may have different values at different points in time.

Event Calculus

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
- event (typically instantaneous).
- fluent: a property that may have different values at different points in time.
- Built-in representation of inertia:
- $F=V$ holds at a particular time-point if $F=V$ has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

Event Calculus

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
- event (typically instantaneous).
- fluent: a property that may have different values at different points in time.
- Built-in representation of inertia:
- $F=V$ holds at a particular time-point if $F=V$ has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.
- RTEC is a CER system based on the Event Calculus formalism

Problem Statement

Problem Statement

initiatedAt $(F=V, T) \leftarrow$
happensAt (A, T), holdsAt($\left.B=V_{B}, T\right)$, not happensAt (C, T), not holdsAt $\left(D=V_{D}, T\right)$.

Problem Statement

initiatedAt $(F=V, T) \leftarrow$

Problem Statement

Problem Statement: Inefficiency

Incremental RTEC

- Two phases:
- Deletion phase
- Addition phase

Incremental RTEC - Deletion phase

Incremental RTEC - Deletion phase

Incremental RTEC - Deletion phase

Incremental RTEC - Deletion phase

Incremental RTEC - Deletion phase

Incremental RTEC - Deletion phase

Incremental RTEC - Addition phase

Incremental RTEC - Evaluation

- Delays up to 16 hours
- 17 M position signals, 34 K vessels
- European seas
- January 2016

Incremental RTEC - Evaluation

- Delays up to 16 hours
- 17 M position signals, 34 K vessels
- European seas
- January 2016

(Left) Average recognition time and (Right) average number of input and complex events. Sliding step of 1 hour

Summary

- Properties of the algorithm:
- Evaluation of small sets early
- Optimal rule rewriting
- Can handle retractions in the input

Summary

- Properties of the algorithm:
- Evaluation of small sets early
- Optimal rule rewriting
- Can handle retractions in the input
- We have performed a complexity analysis of the incremental version and have discovered the conditions that lead to better performance

Summary

- Properties of the algorithm:
- Evaluation of small sets early
- Optimal rule rewriting
- Can handle retractions in the input
- We have performed a complexity analysis of the incremental version and have discovered the conditions that lead to better performance
- Future work:
- Probabilistic version of the incremental algorithm

